Download Free Biotechnology Of Hairy Root Systems Book in PDF and EPUB Free Download. You can read online Biotechnology Of Hairy Root Systems and write the review.

Victor P. Bulgakov, Yuri N. Shkryl, Galina N. Veremeichik, Tatiana Y. Gorpenchenko and Yuliya V. Vereshchagina: Recent Advances in the Understanding of Agrobacterium rhizogenes-Derived Genes and Their Effects on Stress Resistance and Plant Metabolism. Le Zhao, Guy W. Sander and Jacqueline V. Shanks: Perspectives of the Metabolic Engineering of Terpenoid Indole Alkaloids in Catharanthus roseus Hairy Roots. Jian Wen Wang and Jian Yong Wu: Effective Elicitors and Process Strategies for Enhancement of Secondary Metabolite Production in Hairy Root Cultures. Amanda R. Stiles and Chun-Zhao Liu: Hairy Root Culture: Bioreactor Design and Process Intensification. Marina Skarjinskaia, Karen Ruby, Adriana Araujo, Karina Taylor, Vengadesan Gopalasamy-Raju, Konstantin Musiychuk, Jessica A. Chichester, Gene A. Palmer, Patricia de la Rosa, Vadim Mett, Natalia Ugulava, Stephen J. Streatfield and Vidadi Yusibov: Hairy Roots as a Vaccine Production and Delivery System. Zahwa Al-Shalabi and Pauline M. Doran: Metal Uptake and Nanoparticle Synthesis in Hairy Root Cultures.
Modern Applications of Plant Biotechnology in Pharmaceutical Sciences explores advanced techniques in plant biotechnology, their applications to pharmaceutical sciences, and how these methods can lead to more effective, safe, and affordable drugs. The book covers modern approaches in a practical, step-by-step manner, and includes illustrations, examples, and case studies to enhance understanding. Key topics include plant-made pharmaceuticals, classical and non-classical techniques for secondary metabolite production in plant cell culture and their relevance to pharmaceutical science, edible vaccines, novel delivery systems for plant-based products, international industry regulatory guidelines, and more. Readers will find the book to be a comprehensive and valuable resource for the study of modern plant biotechnology approaches and their pharmaceutical applications. - Builds upon the basic concepts of cell and plant tissue culture and recombinant DNA technology to better illustrate the modern and potential applications of plant biotechnology to the pharmaceutical sciences - Provides detailed yet practical coverage of complex techniques, such as micropropogation, gene transfer, and biosynthesis - Examines critical issues of international importance and offers real-life examples and potential solutions
New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Secondary Metabolites Biochemistry and Applications examines the areas of biotechnology and chemical engineering, covering aspects of plants, bacteria and machines, and using microbes as factories. The book is aimed at undergraduates, post-graduates and researchers studying microbial secondary metabolites, and is an invaluable reference source for biochemical engineers working in biotechnology, manipulating microbes, and developing new uses for bacteria and fungi. The applications of secondary metabolites in biotechnology, pharmaceuticals, diagnostics and medical device development are also extensively covered. The book integrates the aforementioned frontline branches into an interdisciplinary research work to satisfy those working in biotechnology, chemical engineering, alternative fuel development, diagnostics and pharmaceuticals. Chapters related to important research work on applications of microbial secondary metabolites are written by specialists in the various disciplines from the international community.
Covers the structurally diverse secondary metabolites of medicinal plants, including their ethnopharmacological properties, biological activity, and production strategies Secondary metabolites of plants are a treasure trove of novel compounds with potential pharmaceutical applications. Consequently, the nature of these metabolites as well as strategies for the targeted expression and/or purification is of high interest. Regarding their biological and pharmacological activity and ethnopharmacological properties, this book offers a comprehensive treatment of 100 plant species, including Abutilon, Aloe, Cannabis, Capsicum, Jasminum, Malva, Phyllanthus, Stellaria, Thymus, Vitis, Zingiber, and more. It also discusses the cell culture conditions and various strategies used for enhancing the production of targeted metabolites in plant cell cultures. Secondary Metabolites of Medicinal Plants: Ethnopharmacological Properties, Biological Activity and Production Strategies is presented in four parts. Part I provides a complete introduction to the subject. Part II looks at the ethnomedicinal and pharmacological properties, chemical structures, and culture conditions of secondary metabolites. The third part examines the many strategies of secondary metabolites production, including: biotransformation; culture conditions; feeding of precursors; genetic transformation; immobilization; and oxygenation. The last section concludes with an overview of everything learned. -Provides information on cell culture conditions and targeted extraction of secondary metabolites confirmed by relevant literature -Presents the structures of secondary metabolites of 100 plant species together with their biological and pharmacological activity -Discusses plant species regarding their distribution, habitat, and ethnopharmacalogical properties -Presents strategies of secondary metabolites production, such as organ culture, pH, elicitation, hairy root cultures, light, and mutagenesis Secondary Metabolites of Medicinal Plants is an important book for students, professionals, and biotechnologists interested in the biological and pharmacological activity and ethnopharmacological properties of plants.
The growing scale of plant-based chemicals for industrial use has generated considerable interest in developing methods to meet their desired production levels. Among various available strategies for their production, the development of Agrobacterium rhizogenes mediated hairy root cultures (HRCs) is generally considered the most feasible approach. Additionally, several proof-of-principle experiments have demonstrated the practical feasibility of HRCs in the plant-based remediation of environment pollutants, biotransformation of important compounds, and production of therapeutic proteins. Given that hairy root biotechnology has now been recognized as a promising and highly dynamic research area, this book offers a timely update on recent advances, and approaches hairy roots as a multifaceted biological tool for various applications. Further, it seeks to investigate the loopholes in existing methodologies, identify remaining challenges and find potential solutions by presenting well thought-out scientific discussions from various eminent research groups working on hairy root biotechnology. This book provides detailed conceptual and practical information on HRC-based research, along with relevant case studies. The content is divided into three broad sections, namely (i) Hairy Roots and Secondary Metabolism, (ii) Progressive Applications, and (iii) Novel Approaches and Future Prospects. By informing the research and teaching community about the major strides made in HRC-based interventions in plant biology and their applications, the book is sure to spark further research in this fascinating field.
The aim of Transgenic Plants: Methods and Protocols is to provide a source of information to guide the reader through a wide range of frequently used, broadly applicable, and easily reproducible techniques involved in the gene- tion of transgenic plants. Its step-by-step approach covers a series of methods for genetically transforming plant cells and tissues, and for recovering whole transgenic plants from them. The volume then moves on to the use of sele- able and reporter markers, positive selection, marker elimination after rec- ery of transgenic plants, and the analysis of transgene integration, expression, and localization in the plant genome. Although contributors usually refer to model plants in most chapters, the protocols described herein should be widely applicable to many plant species. The last two sections are devoted to me- ods of risk assessment and to exploring the current and future applications of transgenic technology in agriculture and its social implications in a case study. Transgenic Plants: Methods and Protocols is divided into six major s- tions plus an introduction, comprising 27 chapters. Part I, the Introduction, is a review of the past, present, and perspectives of the transgenic plants, from the discovery of Agrobacterium tumefaciens as a feasible transformation vector, to its use as a tool to study gene expression and function, and the current and possible future applications of this technology in agriculture, industry, and medicine.
The book provides an overview of current trends in biotechnology and medicinal plant sciences. The work includes detailed chapters on various advance biotechnological tools involved in production of phytoactive compounds of medicinal significance. Some recent and novel research studies on therapeutic applications of different medicinal plants from various geographical regions of the world have also been included. These studies report the antimicrobial activity of various natural plant products against various pathogenic microbial strains. Informative chapters on recent emerging applications of plant products such as source for nutraceuticals and vaccines have been integrated to cover latest advances in the field. This book also explores the conservation aspect of medicinal plants. Thus, chapters having comprehensively complied in vitro conservation protocols for various commercially important rare, threatened and endangered medicinal plants were provided in the present book.
This book provides the latest information about hairy root culture and its several applications, with special emphasis on potential of hairy roots for the production of bioactive compounds. Due to high growth rate as well as biochemical and genetic stability, it is possible to study the metabolic pathways related to production of bioactive compounds using hairy root culture. Chapters discuss the feasibility of hairy roots for plant derived natural compounds. Advantages and difficulties of hairy roots for up-scaling studies in bioreactors are included as well as successful examples of hairy root culture of plant species producing bioactive compounds used in food, flavors and pharmaceutical industry. This book is a valuable resource for researchers and students working on the area of plant natural products, phytochemistry, plant tissue culture, medicines, and drug discovery.
This volume, contributed to by a group of 46 research scientists and engineers, focuses on the integration of two aspects of plant biotechnology - the basic plant science and applied bioprocess engineering. Included in this book are 17 chapters, each dealing with specific topics of current interest with three coherent themes of: plant gene expression, regulation and manipulation; plant cell physiology and metabolism and their regulation; and bioprocess engineering and bioreactor performance of plant cell cultures. All of these topics are integrated into a main theme of "enabling plant biotechnology" relevant to the production of secondary metabolites. This book will be of great value to all plant cell biologists and molecular geneticists, and all those interested in the integration of plant science and bioprocess engineering for development of enabling technology relevant to the production of plant secondary metabolites.