Download Free Biotechnology Of Fungi For Improving Plant Growth Book in PDF and EPUB Free Download. You can read online Biotechnology Of Fungi For Improving Plant Growth and write the review.

Based on a 1988 British Mycological Society symposium, this book reviews how fungi can improve plant growth.
Current Developments in Biotechnology and Bioengineering: Current Advances in Solid-State Fermentation provides knowledge and information on solid-state fermentation involving the basics of microbiology, biochemistry, molecular biology, genetics and principles of genetic engineering, metabolic engineering and biochemical engineering. This volume of the series is on Solid-State fermentation (SSF), which would cover the basic and applied aspects of SSF processes, including engineering aspects such as design of bioreactors in SSF. The book offers a pool of knowledge on biochemical and microbiological aspects as well as chemical and biological engineering aspects of SSF to provide an integrated knowledge and version to the readers. - Provides state-of-the-art information on basic and fundamental principles of solid-state fermentation - Includes key features for the education and understanding of biotechnology education and R&D, in particular on SSF - Lists fermentation methods for the production of a wide variety of enzymes and metabolites - Provides examples of the various industrial applications of enzymes in solid state fermentation
Crop Improvement through Microbial Biotechnology explains how certain techniques can be used to manipulate plant growth and development, focusing on the cross-kingdom transfer of genes to incorporate novel phenotypes in plants, including the utilization of microbes at every step, from cloning and characterization, to the production of a genetically engineered plant. This book covers microbial biotechnology in sustainable agriculture, aiming to improve crop productivity under stress conditions. It includes sections on genes encoding avirulence factors of bacteria and fungi, viral coat proteins of plant viruses, chitinase from fungi, virulence factors from nematodes and mycoplasma, insecticidal toxins from Bacillus thuringiensis, and herbicide tolerance enzymes from bacteria. - Introduces the principles of microbial biotechnology and its application in crop improvement - Lists various new developments in enhancing plant productivity and efficiency - Explains the mechanisms of plant/microbial interactions and the beneficial use of these interactions in crop improvement - Explores various bacteria classes and their beneficial effects in plant growth and efficiency
Biotechnology and Biology of Trichoderma serves as a comprehensive reference on the chemistry and biochemistry of one of the most important microbial agents, Trichoderma, and its use in an increased number of industrial bioprocesses for the synthesis of many biochemicals such as pharmaceuticals and biofuels. This book provides individuals working in the field of Trichoderma, especially biochemical engineers, biochemists and biotechnologists, important information on how these valuable fungi can contribute to the production of a wide range of products of commercial and ecological interest. - Provides a detailed and comprehensive coverage of the chemistry, biochemistry and biotechnology of Trichoderma, fungi present in soil and plants - Includes most important current and potential applications of Trichoderma in bioengineering, bioprocess technology including bioenergy & biofuels, biopharmaceuticals, secondary metabolites and protein engineering - Includes the most recent research advancements made on Trichoderma applications in plant biotechnology and ecology and environment
Molecular Aspects of Plant Beneficial Microbes in Agriculture explores their diverse interactions, including the pathogenic and symbiotic relationship which leads to either a decrease or increase in crop productivity. Focusing on these environmentally-friendly approaches, the book explores their potential in changing climatic conditions. It presents the exploration and regulation of beneficial microbes in offering sustainable and alternative solutions to the use of chemicals in agriculture. The beneficial microbes presented here are capable of contributing to nutrient balance, growth regulators, suppressing pathogens, orchestrating immune response and improving crop performance. The book also offers insights into the advancements in DNA technology and bioinformatic approaches which have provided in-depth knowledge about the molecular arsenal involved in mineral uptake, nitrogen fixation, growth promotion and biocontrol attributes.
Papers presented at Specialist Group Meeting & Symposium on Solid State Fermentation, held at Trivandrum, during March 23-24, 1994, organized by the Regional Research Laboratory, Trivandrum.
Endophytic Fungi: The Full Story of the Untapped Treasure covers the developments in endophytic fungal research from beginning to the end by the eminent researchers involved in the field. It sheds light on the endophytic fungal current research, challenges, and future possibilities, the trending recent topics in the plant-fungal endophytes' biodynamics for sustainable development of bioproducts and its applications are supported in large-scale biosynthesis of industrially and pharmaceutical important biomolecules.Endophytic Fungi: The Full Story of the Untapped Treasure highlights the bioprospecting and applied aspects of endophytic fungal communities from diverse hosts and discusses the practical applications of such endophytes in detail. It also reviews recent strategies on alternative sustainable sources of medicines such as secondary metabolites of fungi instead of over collection of plants under prohibiting of biodiversity conventions. The uniqueness of this book is the inclusion of updated bioinformatics-based strategies and its importance in bioactive molecules produced by endophytic fungi. The book addresses one of the most eminent issues in this field: how to translate the potential that endophytic fungi hold in stable practical application. - Covers major concepts of plant-fungi interaction, biodiversity of endophytic fungi from diverse and biotechnological applications for sustainable development - Is extensively illustrated and clearly written, using easy-to-understand language, sharing the latest developments and potential of fungal products for various applications - Sheds light on the endophytic fungal current research, challenges, and future possibilities
Contributions from 80 world-renowned authorities representing a broad international background lend Fungal Biotechnology in Agricultural, Food, and Environmental Applicationsfirst-class information on the biotechnological potential of entomopathogenic fungi and ergot alkaloids, applications of Trichoderma in disease control, and the development of mycoherbicides. Additional topics include fungal control of nematodes, control of plant disease by arbuscular mycorrhizal fungi, strategies for controlling vegetable and fruit crops, molecular biology tactics with mycotoxigenic fungi and the development of biofungicides, production of edible fungi, fermented foods, and high-value products like mycoprotein.
This is the first book dedicated to the interactions of non-mycorrhizal microbial endophytes with plant roots. The phenotypes of these interactions can be extremely plastic, depending on environmental factors, nutritional status, genetic disposition and developmental stages of the two partners. This book explores diversity, life history strategies, interactions, applications in agriculture and forestry, methods for isolation, cultivation, and both conventional and molecular methods for identification and detection of these endophytes.
This volume provides a comprehensive overview of the major applications and potential of fungal biotechnology. The respective chapters report on the latest advances and opportunities in each topic area, proposing new and sustainable solutions to some of the major challenges faced by modern society. Aimed at researchers and biotechnologists in academia and industry, it represents essential reading for anyone interested in fungal biotechnology, as well as those working within the broader area of microbial biotechnology. Written in an accessible language, the book also offers a valuable reference resource for decision-makers in government and at non-governmental organizations who are involved in the development of cleaner technologies and the global bioeconomy. The 21st century is characterized by a number of critical challenges in terms of human health, developing a sustainable bioeconomy, facilitating agricultural production, and establishing practices that support a cleaner environment. While there are chemical solutions to some of these challenges, developing bio-based approaches is becoming increasingly important. Filamentous fungi, ‘the forgotten kingdom,’ are a group of unique organisms whose full potential has yet to be revealed. Some key properties, such as their exceptional capacity to secrete proteins into the external environment, have already been successfully harnessed for the production of industrial enzymes and cellulosic biofuels. Many further aspects discussed here –such as feeding the hungry with fungal protein, and the potential applications of the various small molecules produced by fungi –warrant further exploration. In turn, the book covers the use of fungal cell factories to produce foreign molecules, e.g. for therapeutics. Strategies including molecular approaches to strain improvement, and recent advances in high-throughput technologies, which are key to finding better products and producers, are also addressed. Lastly, the book discusses the advent of synthetic biology, which is destined to greatly expand the scope of fungal biotechnology. The chapter “Fungal Biotechnology in Space: Why and How?” is available open access under a Creative Commons Attribution 4.0 International License at link.springer.com.