Download Free Biotechnology And Ecology Of Pollen Book in PDF and EPUB Free Download. You can read online Biotechnology And Ecology Of Pollen and write the review.

The author offers an overview of pollen biology and biotechnology for students and researchers in areas such as reproductive biology, biotechnology, aeropalynology, plant breeding, horticulture, and forestry. Citing more than 1,500 references to pollen research, the text covers topics including advances in understanding pollen tube growth, the use of pollen for gene transfer, and advantages and disadvantages of various pollination systems for production of species limits.
Here, for the first time in a single volume, are all the ideas and techniques developed in the last two decades concerning the manipulation of pollen and pollen tubes in plant breeding and biotechnology.
Palynology finds applications in various fields. Some of them are taxonomy, plant evolution, plant breeding programmes, biotechnology, microbiology of water, soil and air, the pharmaceutical industry, cosmetic industry, energy food industry, forensic science, aerobiology, allergy, epidemiology, meteorology, fossil fuel exploration and biodiversity.
In Recognition of the Forgotten Generation D. L. MULCAHyl Pollen was long believed to serve primarily a single function, that of delivering male gametes to the egge A secondary and generally overlooked value of pollen is that it serves to block the transmission of many defective alleles and gene combinations into the next generation. This latter function comes about simply because pollen tubes carrying defective haploid genotypes frequently fail to complete growth through the entire length of the style. However, the beneficial consequences of this pollen selection are diluted by the fact that the same deleterious genotypes are often transmitted through the egg at strictly mendelian frequencies (Khush, 1973). Gene expression in the pollen might thus at least appear to be a phenomenon of trivial consequence. Indeed, Heslop-Harrison (1979) rightly termed the gametophytic portion of the angiosperm life cycle, the "forgotten generation." This neglect, however, came about despite subtle but constant indications that pollen is the site of intense gene activity and selection. For example, Mok and Peloquin (1975) demonstrated that relatively heterozygous diploid pollen shows heterotic characteristics whereas relatively homozygous diploid pOllen does not. This was proof positive that genes are expressed (that is, transcribed and translated) in the pollen. 1 Department of Botany, University of Massachusetts Amherst, MA 01003, USA viii However, the implications for pollen biology of even this recent and well known study were not widely recognized.
A century of research on heterostylous plants has passed since the publication of Charles Darwin's book "The Different Forms of Flowers on Plants of the Same Species" in 1877 summarizing his extensive observations and experiments on these complex breeding systems involving genetic polymorphisms of floral sex organs. Since then heterostylous plants have provided a rich source of material for evolutionary biologists and today they represent one of the classic research paradigms for approaches to the study of evolution and adaptation. The present book is the first modern and comprehensive accont of the subject. In 10 chapters it is concerned with the evolution, genetics, development, morphology, and adaptive significance of heterostyly. Broad syntheses of research on heterostyly as well as new theoretical ideas and experimental data are included.
Principles and Practices in Plant Ecology: Allelochemical Interactions provides insights and details recent progress about allelochemical research from the ecosystem standpoint. Research on chemical ecology of allelochemicals in the last three decades has established this field as a mature science that interrelates the research of biologists, weed and crop scientists, agronomists, natural product chemists, microbiologists, ecologists, soil scientists, and plant physiologists and pathologists. This book demonstrates how the influence of allelochemicals on the various components of an ecosystem-including soil microbial ecology, soil nutrients, and physical, chemical, and biological soil factors-may affect growth, distribution, and survival of plant species. Internationally renowned exper†s discuss how a better understanding of allelochemical phenomena can lead to true sustainable agriculture.
Successful reproduction is the basis not only for the stability of the species in their natural habitat but also for productivity of our crop plants. Therefore, knowledge on reproductive ecology of wild and cultivated plants is important for effective management of our dwindling biodiversity and for the sustainability and improvement of the yield in crop species. Conservation and management of our plant diversity is going to be a major challenge in the coming decades, particularly in the tropical countries which are rich in biodiversity. Reproductive failure is the main driver for pushing a large number of tropical species to vulnerable category. Available data on reproductive ecology on tropical species is very limited and there is an urgent need to initiate research on these lines. A major limitation for the beginners to take up research is the absence of simple concise work manuals that provide step-wise procedures to study all aspects of reproductive ecology. The Manual fills this void. Over 60 protocols described in the manual cover the whole spectrum of reproductive ecology - study sites and species, phenology, floral morphology and sexuality, pollen and pistil biology, pollination ecology, breeding system, seed biology, seed dispersal and seedling recruitment. Each chapter gives a concise conceptual account of the topic before describing the protocols. The Manual caters to researchers, teachers and students who are interested in any aspect of reproductive ecology of flowering plants -- botanists, ecologists, agri-horticulturists, foresters, entomologists, plant breeders and conservation biologists.
Over the past 20 years, public concerns have grown in response to the apparent rising prevalence of food allergy and related atopic conditions, such as eczema. Although evidence on the true prevalence of food allergy is complicated by insufficient or inconsistent data and studies with variable methodologies, many health care experts who care for patients agree that a real increase in food allergy has occurred and that it is unlikely to be due simply to an increase in awareness and better tools for diagnosis. Many stakeholders are concerned about these increases, including the general public, policy makers, regulatory agencies, the food industry, scientists, clinicians, and especially families of children and young people suffering from food allergy. At the present time, however, despite a mounting body of data on the prevalence, health consequences, and associated costs of food allergy, this chronic disease has not garnered the level of societal attention that it warrants. Moreover, for patients and families at risk, recommendations and guidelines have not been clear about preventing exposure or the onset of reactions or for managing this disease. Finding a Path to Safety in Food Allergy examines critical issues related to food allergy, including the prevalence and severity of food allergy and its impact on affected individuals, families, and communities; and current understanding of food allergy as a disease, and in diagnostics, treatments, prevention, and public policy. This report seeks to: clarify the nature of the disease, its causes, and its current management; highlight gaps in knowledge; encourage the implementation of management tools at many levels and among many stakeholders; and delineate a roadmap to safety for those who have, or are at risk of developing, food allergy, as well as for others in society who are responsible for public health.
This laboratory guide comes at a time when several other method books have already been published in this field. Is this one different from the others? Yes and no. There was no attempt made to be comprehensive. Rather, data were brought to bear on areas where enough competence has been gathered in our laboratories and to complement recent method books (many of which cover extensively various aspects of molecular biology) in those matters which appeared to us somewhat neglected. There was a constant preoccupation and effort to provide miniaturized proce dures that are both simple and time-saving. Interest was devoted to standardized procedures and culture conditions, avoiding dogmas such as those giving excessive importance to sophisticated culture media with endless adjustments for local or personal considerations. The key to success is the quality of the plant material serving as a source of cells. Consequently, isolation. extraction or culture techniques can be simplified and standardized. This is symptomatic for our times as it marks the end of a period when methodological matters were frequently above the biological problems. The times of "methods above all" is basically over, despite the fact that many of us still believe that, say, tissue culture is a "science" per se. By presenting a few original techniques we believe that one seriously reduces the empiricism still prevailing in this area of research.