Download Free Biosensors For Environmental Monitoring Book in PDF and EPUB Free Download. You can read online Biosensors For Environmental Monitoring and write the review.

During recent years both research activity and the number of reports on biosensor systems applied to environmental analysis have increased significantly. Compounds present in the environment have increasingly been shown to have effects on biological systems such as cells, enzymes, binding proteins, and DNA. In order to deal with the increasing demand for information about possible pollution of the environment there is need for improvements to analytical methods. Thus, biochemistry-based analytical methods should offer the possibility of monitoring these effects. This text provides an overview of existing biosensor principles, commercially available instruments, and related biochemical assays which have been developed and applied to environmental monitoring. Providing the reader with detailed information on methodology and a description of the practical application of selected sensors, this text also includes reports on established chemical methods for comparison. This volume presents fundamental principles together with examples of applications and discussion of drawbacks, and future developments. Of interest to all in the field of environmental analysis and biosensor technology, this text provides a comprehensive treatise on the latest research and developments in the field.
Biosensors offer clear and distinct advantages over standard analytical methods for the direct monitoring of environmental pollutants in the field, such as real-time detection with minimum sample preparation and handling. The present book highlights recent advantages that will be of great value to a range of scientists, researchers and students dealing with analytical and environmental chemistry and biosensor technology. It presents recent trends in analytical methodology for the determination of indoor and outdoor pollutants, advances in DNA, biological and recognition-based sensors, examples of biosensors for use in field and water analysis, biosensors based on non-aqueous systems, and recent advances in the miniaturisation and micromachining of biosensors.
Real-time and reliable detection of molecular compounds and bacteria is essential in modern environmental monitoring. For rapid analyses, biosensing devices combining high selectivity of biomolecular recognition and sensitivity of modern signal-detection technologies offer a promising platform. Biosensors allow rapid on-site detection of pollutants and provide potential for better understanding of the environmental processes, including the fate and transport of contaminants.This book, including 12 chapters from 37 authors, introduces different biosensor-based technologies applied for environmental analyses.
Nucleic acids are the fundamental building blocks of life and are found in all living things. In recent years, their functions have been shown to extend beyond the Watson-Crick base pair recognition of complementary strands. Molecules (known as aptamers) consisting of 40-50 nucleotides have been isolated that are able to bind a broad range of molecules with high affinity and specificity. The molecules recognized by aptamers range from small organic molecules to proteins, cells and even intact viral particles. Catalytic DNA molecules called NAzymes (RNAzyme or DNAzyme) have also been shown to exist and, when combined with aptamers, are known as aptazymes. These biomolecules can be used to develop smart and innovative biosensors for environmental analysis. Monitoring of contaminants in the air, water and soil is a key component in understanding and managing risks to human health and ecosystems. This, in conjunction with the time and cost involved in traditional chemical analysis, means there is a growing need for simple, rapid, cost-effective and portable screening methods. Biosensors are compact devices which complement current field screening and monitoring methods. This book demonstrates the incredible opportunities that nucleic acids can offer to environmental analytical chemistry. The chapters: show how nucleic acids have a pivotal role in the development of smart biosensors for environmental monitoring; describe the development of biosensors based on aptamers and NAzymes for the detection of organic and inorganic pollutants; deal with the use of nucleic acid based biosensors for environmental toxicity screening, and detail the use of nanomaterials, as well as miniaturization and lab-on-a-chip technologies, for nucleic acid based biosensing systems.
Tools, Techniques and Protocols for Monitoring Environmental Contaminants describes information on the strategic integration of available monitoring methods with molecular techniques, with a focus on omics (DNA, RNA and protein based) and molecular imprinted polymer and nanomaterial based advanced biosensors for environmental applications. It discusses the most commonly practiced analytic techniques, such as HPLC, MS, GCMS and traditional biosensors, giving an overview of the benefits of advanced biosensors over commonly practiced methods in the rapid and reliable assessment of environmental contaminants. As environmental contaminants have become one of the serious concerns in terms of their rapid growth and monitoring in the environment, which is often limited due to costly and laborious methods, this book provides a comprehensive update on their removal, the challenges they create for environmental regulatory agencies, and their diverse effects on terrestrial and aquatic environments.
Discussing the role biosensors play in detecting and monitoring environmental substances, Biosensors and Environmental Health provides key facts that can be applied to other areas of health and disease and a "mini-dictionary" of key terms and summary points. It covers personal toxicity testing, soil and risk assessment, pesticide, insecticides, parasites, nitrate, endocrine disruptors, heavy metals, food contamination, whole cell bioreporters, bacterial biosensors, antibody-based biosensors, enzymatic, amperometric and electrochemical aspects, quorum sensing, DNA-biosensors, cantilever biosensors, bioluminescence and other methods and applications. The contributors are leading authorities and the book is essential reading for environmental scientists, toxicologists, medical doctors, health care professionals, pathologists, biologists, biochemists, chemists and physicists, general practitioners as well as those interested in disease and sciences in general.
Electrochemical Nano-biosensors: Applications in Diagnostics, Therapeutics, Environment, and Food Management features a critical overview of different, recently reported nanomaterial-based electrochemical sensing and biosensing strategies. It is based on various analytical approaches for the point-of-care or POC healthcare related diagnostics, evaluation of contaminants, additives and adulterants in foods and environment management. Each section under the topic is discussed in its exhaustive detail, incorporating significant literature reviews spanning over two decades. The book critically analyzes issues and challenges for its applications in real world settings, universal applicability in resource limited sets-ups of remote areas, ease of integration with other sensing platforms, portability/miniaturization, and more. - Takes account of the fact that nanomaterials are increasingly favored as labels for electrochemical immunoassay protocols for the development of highly sensitive and selective electrochemical sensing device - Refines biosensors for real-world settings, academicians, healthcare professionals and industrialist who need to team up for the successful realization of POCT/LOCT devices - Contains focused and targeted research coupled with other technological advances to help in the development of cutting-edge nanomaterial based electrochemical immunoassays with features of test-strip technology and lateral flow
Containing cutting edge research on the hot topic of nanobiosensor, this book will become highly read Biosensor research has recently re-emerged as most vibrant area in recent years particularly after the advent of novel nanomaterials of multidimensional features and compositions. Nanomaterials of different types and striking properties have played a positive role in giving the boost and accelerated pace to biosensors development technology. Nanobiosensors - From Design to Applications covers several aspects of biosensors beginning from the basic concepts to advanced level research. It will help to bridge the gap between various aspects of biosensors development technology and applications. It covers biosensors related material in broad spectrum such as basic concepts, biosensors & their classification, biomarkers & their role in biosensors, nanostructures-based biosensors, applications of biosensors in human diseases, drug detection, toxins, and smart phone based biosensors. Nanobiosensors - From Design to Applications will prove a source of inspiration for research on biosensors, their local level development and consequently using for practical application in different industries such as food, biomedical diagnosis, pharmaceutics, agriculture, drug discovery, forensics, etc. * Discusses the latest technology and advances in the field of nanobiosensors and their applications in human diseases, drug detection, toxins * Offers a broad and comprehensive view of cutting-edge research on advanced materials such as carbon materials, nitride based nanomaterials, metal and metal oxide based nanomaterials for the fast-developing nanobiosensors research * Goes to a wide scientific and industry audience Nanobiosensors - From Design to Applications is a resource for polymer chemists, spectroscopists, materials scientists, physical chemists, surface chemists, and surface physicists.
The contamination of environment and water resources by Selenium (Se) and its oxyanions from various sources are emerging contaminants of significant health and environmental concern. The primary sources include agricultural drainage water, mine drainage, residues from fossil fuels, thermoelectric power plants, oil refineries, and metal ores. Various methods and technologies have been developed which focus on the treatment of selenium-containing waters and wastewater. High concentrations of selenium in water cause various adverse impact to human health, such as carcinogenic, genotoxic, and cytotoxic effects. But in the lower concentrations, it is a useful constituent of the biological system. The range between toxicity and deficiency of selenium is minimal (40 to 400 μg per day), due to its dual nature. Selenium Contamination in Water contains the latest status and information on selenium’s origin, its chemistry and its toxicity to humans. The book represents a comprehensive and advanced reference book for students, researchers, practitioners, and policymakers in working in the field of metalloids, in particular selenium. A special emphasis is given on its geological distribution, monitoring techniques, and remedial technologies. As such, the authors critically analyze the various techniques used for the monitoring and removal of selenium from water. Featuring chapters arranged according to the major themes of the latest research, with specific case-studies from industrial experiences of selenium detection and removal, Selenium Contamination in Water will be particularly valued by researchers, practitioners, and policymakers in working in the field of metalloids including selenium.
This book deals with recent developments and applications of environmental monitoring technologies, with emphasis on rapidly progressing optical and biological methods. Written by worldwide experts, this book will be of interest to environmental scientists in academia, research institutes, industry and the government.