Download Free Bioresources For Sustainable Plant Nutrient Management Book in PDF and EPUB Free Download. You can read online Bioresources For Sustainable Plant Nutrient Management and write the review.

The future of agriculture strongly depends on our ability to enhance productivity without sacrificing long-term production potential. An ecologically and economically sustainable strategy is the application of microorganisms, such as the diverse bacterial species of plant growth promoting bacteria (PGPB). The use of these bio-resources for the enhancement of crop productivity is gaining worldwide importance. “Bacteria in Agrobiology: Plant Nutrient Management” focus on the management of plant nutrient to support plant growth and development. The topics treated in this book include mechanisms of plant growth promoting rhizobacteria, zinc and phosphate solubilizing microorganisms, sulfur oxidizing bacteria, ACC deaminase, siderophores, phytohormones, quorum-sensing, biofilms, antibiotics, volatiles, denitrification and integrated nutrient management.
This book provides a comprehensive overview of the benefits of biofertilizers as an alternative to chemical fertilizers and pesticides. Agricultural production has increased massively over the last century due to increased use of chemical fertilizers and pesticides, but these gains have come at a price. The chemicals are not only expensive; they also reduce microbial activity in agricultural soils and accumulate in the food chain, with potentially harmful effects for humans. Accordingly, it is high time to explore alternatives and to find solutions to overcome our increasing dependence on these chemicals. Biofertilizers, which consist of plant remains, organic matter and microorganisms, might offer an alternative. They are natural, organic, biodegradable, eco-friendly and cost-effective. Further, the microbes present in the biofertilizers are important, because they produce nutrients required for plant growth (e.g., nitrogen, phosphorus, potassium), as well as substances essential for plant growth and development (e.g., auxins and cytokinins). Biofertilizers also improve the physical properties, fertility and productivity of soil, reducing the need for chemical fertilizers while maintaining high crop yield. This makes biofertilizers a powerful tool for sustainable agriculture and a sustainable environment. The book covers the latest research on biofertilizers, ranging from beneficial fungal, bacterial and algal inoculants; to microbes for bioremediation, wastewater treatment; and recycling of biodegradable municipal, agricultural and industrial waste; as well as biocontrol agents and bio-pesticides. As such, it offers a valuable resource for researchers, academics and students in the broad fields of microbiology and agriculture.
This book is a compilation of recent global measures to conserve bio-resources and manage biotic and abiotic stresses. It highlights emerging issues related to agriculture, abiotic and biotic stress factors, ethnic knowledge, climate change and global warming, as well as natural resources and their sustainable management. It also focuses on the consolidated efforts of scientists and academics engaged in addressing a number of issues related to resource management and combating stresses in order to protect the Earth. Crop production and productivity have been significantly improved, however, there have been no corresponding practical advances in sustainable agriculture.This book offers a wide range of affordable approaches to managing bio-resources with a focus on sustainability. Lastly, it describes research highlights and future areas of research.
Sustainable Plant Nutrition: Molecular Interventions and Advancements for Crop Improvement explores the significant opportunities for sustainable, eco-friendly approaches in plant nutrition and agricultural crop production. The book highlights the various prospects involved in optimizing plant nutrient uptake agriculture and includes chapters representing diverse areas dealing with biotechnology, nanotechnology, molecular biology, proteomics, genomics and metabolomics. This book is an ideal resource for those seeking to ensure a sustainable plant production future. While plants have evolved a set of elaborate mechanisms to cope with nutrient limitations, the traditional supplementation by the application of fertilizers to plant productivity may then lead to overfertilization which can actually reduce plant growth and have adverse effects on the environment. To tackle these issues, a detailed understanding of the responses of plants to nutrients and nutrient deficiency at the physiological, metabolic, transcriptome and epigenetic level is essential. - Illustrates the central role of sustainable plant nutrition to address current and future challenges - Presents global insights and research ranging from signaling to sensing and translational research - Provides a forward-looking perspective for future plans of action
Soil health and fertility are continuously declining due to the removal of essential plant nutrients from the soils in the current changing climate scenario. Due to less soil organic carbon (SOC) and growing of high-yielding varieties and hybrids further increases deficiencies of both macro and micronutrients that had a negative impact on soil health, crop productivity, food security, and growers. Integrated nutrients management not only increases crop productivity and growers' income but also increases soil fertility, health, and sustainability in changing climates. Integrated nutrients management (INM) refers to the maintenance of soil fertility and improvement in crop productivity with the application of plant nutrients through the combined application of organic fertilizers (animal manures and plant residues), chemical fertilizers (urea, SSP, DAP, etc.) and bio-fertilizers (beneficial microbes).
Bioresources are generated in a variety of environments and each presents unique risks and benefits associated with land application. Bioresources from livestock, urban and bioenergy systems were selected and evaluated through field, greenhouse and laboratory studies of potential risk and benefits of recycling to agricultural and urban landscapes. The waste stream, including feedstock sources and treatment processes, affects composition and properties of bioresources and effects on biogeochemical cycles of amended soils. Variation of decomposition and nutrient mineralization rates among bioresources used to amend soil for turfgrass and forage reflected variation among contrasting feedstock sources and treatments prior to application. During turfgrass establishment, plant available nitrogen and nitrogen mineralized from a bioresource from livestock waste streams, (Geotube! residual solids, supplied N in excess of crop uptake potential and contributed to leaching loss of N. In contrast, N mineralization rates from bioresources generated during methane production from dairy manure (manure solids) were not sufficient to maximize crop production, necessitating N fertilizer application. In addition to variation of composition, bioresource effects on crop productivity and environmental quality vary among management practices and between forage and turfgrass cropping systems. Large application rates of bioresources increase soil nutrient concentration and potential crop productivity, but contribute to increased nutrient loss in drainage and surface runoff. Yet, incorporation or Alum treatment of bioresources will reduce runoff loss of dissolved P and protect water quality without sacrificing crop productivity. Alum treatment of bioresources prior to land application effectively reduced runoff loss of dissolved P to levels observed for control soil. For situations in which large, volume-based bioresource rates are top-dressed or incorporated, export of applied nutrients environmental impacts were compared between forage and turfgrass systems. Starting during the initial year of production, annual export of applied N and P in Tifway bermudagrass sod was greater than export through forage harvests of Tifton 85. Low forage yield limited N and P export from Tifton 85 during the year of establishment, but increased forage yield during the second year increased export of manure N and P to levels more comparable to sod. As variation between compost sources, turfgrass and forage production systems, and application methods indicated, effective management of bioresources is necessary to balance benefits and risk in cropping systems. Integrated assessment of bioresource composition and crop-specific management of application method and rate will enable sustainable bioresource cycling and crop productivity.
This volume discusses innovative advancements in soil and crop microbiome technology and methods to support agricultural sustainability and reduce soil degradation. As climate change impacts agricultural productivity and soil health in impacted regions throughout the world, potential alternatives to find balance between soil health and crop yield are increasingly needed. Therefore, this book provides a timely, global perspective with a collection of expert authors to address how microbiomes can be used to achieve agricultural sustainability in threatened and degraded areas, while also covering related matters including soil health, pest management, waste disposal, environmental contamination, biofertilizer production, composting, and microbial engineering. The book is meant to serve as a reference for agriculturalists, environmentalists, graduate and post-graduate students, researchers, and professors of sustainability and agricultural management.
The alkaline calcareous nature, high pH, salinity, heavy metals pollution, and low organic matter content of soils in many parts of the world have diminished the soil fertility and made essential nutrients unavailable to crops. To cope with the poor availability of soil nutrients, improve soil health, and feed the fast-growing global population, the farming community is using millions of tons of expensive chemical fertilizers in their fields to maintain an adequate level of nutrients for crop sustainability as well as to ensure food security. In this scenario, the exploitation of biofertilizers has become of paramount importance in the agricultural sector for their potential role in food safety and sustainable crop production. Bearing in mind the key importance of biofertilizers, this book examines the role of biofertilizers in sustainable management of soil and plant health under different conditions of the changing climate. Finally, it provides a platform for scientists and academicians all over the world to promote, share, and discuss various new issues, developments, and limitations in biofertilizers, crops, and beneficial microbes. Salient Features: Mainly focuses on the role of biofertilizers in managing soils for improving crop and vegetable yields as a substitute for chemical fertilizers. Highlights the valuable information for the mechanism of action, factors affecting, and limitations of biofertilizers in the wider ecosystem. Presents a diversity of techniques used across plant science. Designed to cater to the needs of researchers, technologists, policy makers, and undergraduates and postgraduates studying in the fields of organic agriculture, soil microbiology, soil biology, soil fertility, and fertilizers. Addresses plant responses to biofertilizers.