Download Free Biophysical Modeling And Experimental Validation Of Relative Biological Effectiveness Rbe For 4he Ion Beam Therapy Book in PDF and EPUB Free Download. You can read online Biophysical Modeling And Experimental Validation Of Relative Biological Effectiveness Rbe For 4he Ion Beam Therapy and write the review.

This open access textbook focuses on the various aspects of radiobiology. The goal of radiobiological research is to better understand the effects of radiation exposure at the cellular and molecular levels in order to determine the impact on health. This book offers a unique perspective, by covering not only radiation biology but also radiation physics, radiation oncology, radiotherapy, radiochemistry, radiopharmacy, nuclear medicine, space radiation biology & physics, environmental and human radiation protection, nuclear emergency planning, molecular biology and bioinformatics, as well as the ethical, legal and social considerations related to radiobiology. This range of disciplines contributes to making radiobiology a broad and rather complex topic. This textbook is intended to provide a solid foundation to those interested in the basics and practice of radiobiological science. It is a learning resource, meeting the needs of students, scientists and medical staff with an interest in this rapidly evolving discipline, as well as a teaching tool, with accompanying teaching material to help educators.
This book serves as a practical guide for the use of carbon ions in cancer radiotherapy. On the basis of clinical experience with more than 7,000 patients with various types of tumors treated over a period of nearly 20 years at the National Institute of Radiological Sciences, step-by-step procedures and technological development of this modality are highlighted. The book is divided into two sections, the first covering the underlying principles of physics and biology, and the second section is a systematic review by tumor site, concentrating on the role of therapeutic techniques and the pitfalls in treatment planning. Readers will learn of the superior outcomes obtained with carbon-ion therapy for various types of tumors in terms of local control and toxicities. It is essential to understand that the carbon-ion beam is like a two-edged sword: unless it is used properly, it can increase the risk of severe injury to critical organs. In early series of dose-escalation studies, some patients experienced serious adverse effects such as skin ulcers, pneumonitis, intestinal ulcers, and bone necrosis, for which salvage surgery or hospitalization was required. To preclude such detrimental results, the adequacy of therapeutic techniques and dose fractionations was carefully examined in each case. In this way, significant improvements in treatment results have been achieved and major toxicities are no longer observed. With that knowledge, experts in relevant fields expand upon techniques for treatment delivery at each anatomical site, covering indications and optimal treatment planning. With its practical focus, this book will benefit radiation oncologists, medical physicists, medical dosimetrists, radiation therapists, and senior nurses whose work involves radiation therapy, as well as medical oncologists and others who are interested in radiation therapy.
Proton and Carbon Ion Therapy is an up-to-date guide to using proton and carbon ion therapy in modern cancer treatment. The book covers the physics and radiobiology basics of proton and ion beams, dosimetry methods and radiation measurements, and treatment delivery systems. It gives practical guidance on patient setup, target localization, and treatment planning for clinical proton and carbon ion therapy. The text also offers detailed reports on the treatment of pediatric cancers, lymphomas, and various other cancers. After an overview, the book focuses on the fundamental aspects of proton and carbon ion therapy equipment, including accelerators, gantries, and delivery systems. It then discusses dosimetry, biology, imaging, and treatment planning basics and provides clinical guidelines on the use of proton and carbon ion therapy for the treatment of specific cancers. Suitable for anyone involved with medical physics and radiation therapy, this book offers a balanced and critical assessment of state-of-the-art technologies, major challenges, and the future outlook of proton and carbon ion therapy. It presents a thorough introduction for those new to the field while providing a helpful, up-to-date reference for readers already using the therapy in clinical settings.
The second edition of Neuro-Oncology: The Essentials presents a comprehensive, highly readable introduction to the fundamental science and core clinical concepts for successfully managing common problems in neuro-oncology. Tightly focused chapters provide up-to-date systematic coverage of biology, imaging, surgery, radiation, chemotherapy, and biological concepts. The book addresses specific tumor types in separate chapters, providing detailed discussion of background, incidence, clinical features, management, surgical approaches, recurrence, and outcomes. Highlights: Pearls, pitfalls, controversies, and special considerations in textboxes - ideal for rapidly reviewing key points More than 250 photographs and illustrations demonstrate important concepts This book is an invaluable reference for neurosurgeons, neurologists, oncologists, residents and fellows in these specialties, as well as for students.
Clinical conformal radiotherapy is the holy grail of radiation treatment and is now becoming a reality through the combined efforts of physical scientists and engineers, who have improved the physical basis of radiotherapy, and the interest and concern of imaginative radiotherapists and radiographers. Intensity-Modulated Radiation Therapy de
The book focuses on two concurrent experimental therapies in cancer treatment known as boron neutron capture therapy (BNCT) and gadolinium neutron capture therapy (GdNCT) using a variety of boron- and gadolinium-based compounds. Some of the gadolinium compounds serve the dual purpose as being MRI contrast agents and GdNCT agents. The book describes why BNCT & GdNCT were not at the forefront of the clinical trials during the past seven to eight decades since the discovery of neutrons by John Chadwick in 1932 and how the latest development in the synthesis of target boron- and gadolinium-based drugs has turned the area into the hottest one worthy of further investigation with the new clinical trials in the USA and elsewhere.
In October 1982, a small international symposium was held at the Gesellschaft fUr Strahlen- und Umweltforschung mbH (GSF) in Munich as a satellite meeting of the IX International Conference on Analytical Cytology. The symposium focussed on cytometric approaches to biological dosimetry, and was, to the best of our knowledge, the first meeting on this subject ever held. There was strong encouragement from the 75 attendees and from others to publish a proceedings of the symposium. Hence this book, containing 30 of the 36 presentations, has been assembled. Dosimetry, the accurate and systematic determination of doses, usually refers to grams of substance administered or rads of ionization or some such measure of exposure of a patient, a victim or an experimental system. The term also can be used to describe the quantity of an ultimate, active agent as delivered to the appropriate target material within a biological system. Thus, for mutagens, one can speak of DNA dosimetry, meaning the number of adducts produced in the DNA of target cells such as bone-mar row stem cells or spermatogonia.