Download Free Bionanotechnology Next Generation Therapeutic Tool Book in PDF and EPUB Free Download. You can read online Bionanotechnology Next Generation Therapeutic Tool and write the review.

Nanoscale technologies are crucial for the characterization and fabrication of biomaterials that are useful in targeted drug delivery systems. New materials enable the delivery of therapeutic agents to specific tissues and cells in order to treat a range of diseases. Bionanotechnology: Next-Generation Therapeutic Tools provides a quick overview of the use of nanomaterials in modern drug delivery and targeted drug therapy systems. The book starts with an overview of nanomaterial toxicity with subsequent chapters detailing their applications in nanomedicine. Concepts such as immunotherapy, cancer theranostics, molecular imaging, aptamers and viral nanoparticles are highlighted in specific chapters. The simplified presentation along with scientific references makes this book ideal for pharmacology and biomedical engineering scholars and life science readers.
This book comprehensively reviews the application of nanoparticles in cancer diagnosis and treatment. The introductory section provides a fundamental understanding of cancer biology, its global incidence and prevalence, and the intricate nano–bio interactions at the cellular level. The subsequent section discusses the pivotal role of nanoparticles in precise cancer detection, enhancing cancer imaging and serving as contrast agents for accurate diagnosis. It also presents cutting-edge nanotechnology-based methods for detecting HTLV-1 retroviruses. The following section covers the utilization of lipid-based nanoparticles, monoclonal antibodies, and advanced nanotherapeutics for targeted cancer treatments. This book is a useful resource for researchers, clinicians, and students in the fields of oncology and nanotechnology.
This book highlights the role of Biomedical Engineering (BME) used in diagnosis (e.g., body scanners) and treatment (radiation therapy and minimal access surgery in order to prevent various diseases). In recent years, an important progress has been made in the expansion of biomedical microdevices which has a major role in diagnosis and therapy of cancer. When fighting cancer, efficacy and speed are of the utmost importance. A recently developed microfluidic chip has enabled a breakthrough in testing the efficacy of specialized cancer drugs. Effective cancer-targeting therapies will require both passive and active targeting strategies and a thorough understanding of physiologic barriers to targeted drug delivery. Targeted cancer treatments in development and the new combinatorial approaches show promise for improving targeted anticancer drug delivery and improving treatment outcomes. This book discusses the advancements and innovations in the field of BME that improve the diagnosis and treatment of cancer. This book is focused on bioengineering approaches to improve targeted delivery for cancer therapeutics, which include particles, targeting moieties, and stimuli-responsive drug release mechanisms. This book is a useful resource for students, researchers, and professionals in BME and medicine.
A virus is considered a nanoscale organic material that can infect and replicate only inside the living cells of other organisms, ranging from animals and plants to microorganisms, including bacteria and archaea. The structure of viruses consists of two main parts: the genetic material from either DNA or RNA that carries genetic information, and a protein coat, called the capsid, which surrounds and protects the genetic material. By inserting the gene encoding functional proteins into the viral genome, the functional proteins can be genetically displayed on the protein coat to form bioengineered viruses. Therefore, viruses can be considered biological nanoparticles with genetically tunable surface chemistry and can serve as models for developing virus-like nanoparticles and even nanostructures. Via this process of viral display, bioengineered viruses can be mass-produced with lower cost and potentially used for energy and biomedical applications. This book highlights the recent developments and future directions of virus-based nanomaterials and nanostructures. The virus-based biomimetic materials formulated using innovative ideas were characterized for the applications of biosensors and nanocarriers. The research contributions and trends on virus-based materials covering energy harvesting devices to tissue regeneration in the last two decades are discussed.
Green synthesis is an emerging method for deriving nanoparticles present in natural plants for use in nanomedicine. Written by experts in the field, Green Synthesis in Nanomedicine and Human Health showcases the exciting developments of this specialty and its potential for promoting human health and well-being. This book gives practical information on novel preparation methods for identifying nanoparticles present in natural plants. It discusses applications of nanoparticles in combating communicable, non-communicable and vector-borne diseases. It also explores the potential for nanoparticles to combat antimicrobial resistance through improvements in treatment methods, diagnostics and drug delivery systems. Features scientific evidence of opportunities for integrating indigenous flora into nanomedicine to develop cost-effective therapeutic and diagnostic solutions for diseases, including cancer, tuberculosis, malaria and diabetes. Places green synthesis and nanomedicine in the African orthodox and traditional healthcare context. Provides policymakers with scientific evidence to inform policies for controlling or mitigating dangerous diseases. This book is essential reading for students, scientists, policymakers and practitioners of nanotechnology, and will appeal to anyone with an interest in integrating traditional African healthcare and Western medicine.
This book provides comprehensive coverage on current trends in marine omics of various relevant topics such as genomics, lipidomics, proteomics, foodomics, transcriptomics, metabolomics, nutrigenomics, pharmacogenomics and toxicogenomics as related to and applied to marine biotechnology, molecular biology, marine biology, marine microbiology, environmental biotechnology, environmental science, aquaculture, pharmaceutical science and bioprocess engineering.
The book discusses the basics of aptamers and the advent of aptamer-based technology in recent times. The book covers the diverse applications of aptamers, such as in detection of animal and plant pathogens, disease diagnosis and therapeutics, environmental contamination detection etc. Besides these applications, the book also describes the use of these synthetic or modified DNA, as drug delivery vehicles. The different chapters describe how the binding capacity and specificity of aptamers can be exploited in various ways. The book also discusses how these attributes of aptamers can outdo the antibody technology in biomedical and diagnostic solutions. This crisp and concise book gives the readers an insight into the most recent biotechnological applications of aptamers. ​
Organic Nanomaterials for Cancer Phototheranostics highlights the use of biocompatible building blocks to make nanomaterials that can aid in medical treatment through better diagnostic and antitumor efficacy. It synthesizes the current literature on synthetic strategies and designs based on peptides, proteins, polymers, lipids, and their conjugates, as well as composites and complexes with metals and inorganic components used to form the nanomaterials. Mechanistic approaches, clinical problems, and therapeutic and diagnostics mechanisms are covered in each chapter. Cellular interactions and uptake, pharmacokinetics, biodistribution, drug delivery efficiency, and safety concerns of these types of nanomaterials are discussed, as well. Other topics looked at include photostability, clearance, metabolism, in-vitro and in-vivo mechanisms, therapeutic efficacy, imaging, and toxicology. - Outlines fabrication and design strategies of peptides, proteins, polymers, lipids, composites, and complexes with metals and inorganic components - Discusses the limitations and challenges of organic nanomaterials in clinical use, including their mechanisms of penetration into cancer cells and tissue, photostability, clearance, and metabolism - Covers clinical problems and therapeutic and diagnostics mechanisms
This book describes the fundamental concepts, the latest developments and the outlook of the field of nanozymes (i.e., the catalytic nanomaterials with enzymatic characteristics). As one of today’s most exciting fields, nanozyme research lies at the interface of chemistry, biology, materials science and nanotechnology. Each of the book’s six chapters explores advances in nanozymes. Following an introduction to the rise of nanozymes research in the course of research on natural enzymes and artificial enzymes in Chapter 1, Chapters 2 through 5 discuss different nanomaterials used to mimic various natural enzymes, from carbon-based and metal-based nanomaterials to metal oxide-based nanomaterials and other nanomaterials. In each of these chapters, the nanomaterials’ enzyme mimetic activities, catalytic mechanisms and key applications are covered. In closing, Chapter 6 addresses the current challenges and outlines further directions for nanozymes. Presenting extensive information on nanozymes and supplemented with a wealth of color illustrations and tables, the book offers an ideal guide for readers from disparate areas, including analytical chemistry, materials science, nanoscience and nanotechnology, biomedical and clinical engineering, environmental science and engineering, green chemistry, and novel catalysis.
"Biochemistry Essentials: Formulas Guide" is a concise and indispensable resource that distills the complex field of biochemistry into a user-friendly reference. This book provides a comprehensive collection of essential formulas, equations, and key concepts crucial for understanding the fundamental principles of biochemistry. Designed for students, researchers, and professionals, it serves as a quick and accessible guide to navigate through the core elements of biochemistry, facilitating a deeper comprehension of the molecular processes that underlie life.