Download Free Biomimetic Robotics Book in PDF and EPUB Free Download. You can read online Biomimetic Robotics and write the review.

This book is for a first course in robotics, especially in unmanned aerial or underwater vehicles.
Keywords: Biomimetics Robotics Biomimetic intelligence Biomimetic robotics Biomimetics is the development of novel theories and technologies by emulating the models and systems of nature. The transfer of function from biological science into engineering promotes emerging research areas across many disparate disciplines. Recently, advances in biomimetic intelligence and robotics have gained great popularity. Biomimetic robotics are designed with biological characteristics and functions to be applied in different scenarios, such as humanoid robots in the home environment, quadruped robots in the field, and bird-like flying robots in the sky. Biomimetic intelligence aims to solve many complex problems by studying the principles of biological systems, resulting in a series of efficient algorithms, such as the genetic algorithm and neural network. Biomimetic intelligence further facilitates the performance of biomimetic robotics, making it possible to be deployed in more and more practical applications.
Biomimetic engineering takes the principles of biological organisms and copies, mimics or adapts these in the design and development of new materials and technologies. Biomimetic Technologies reviews the key materials and processes involved in this groundbreaking field, supporting theoretical background by outlining a range of applications. Beginning with an overview of the key principles and materials associated with biomimetic technologies in Part One, the book goes on to explore biomimetic sensors in more detail in Part Two, with bio-inspired tactile, hair-based, gas-sensing and sonar systems all reviewed. Biomimetic actuators are then the focus of Part Three, with vision systems, tissue growth and muscles all discussed. Finally, a wide range of applications are investigated in Part Four, where biomimetic technology and artificial intelligence are reviewed for such uses as bio-inspired climbing robots and multi-robot systems, microrobots with CMOS IC neural networks locomotion control, central pattern generators (CPG's) and biologically inspired antenna arrays. - Includes a solid overview of modern artificial intelligence as background to the principles of biomimetic engineering - Reviews a selection of key bio-inspired materials and sensors, highlighting their current strengths and future potential - Features cutting-edge examples of biomimetic technologies employed for a broad range of applications
This book constitutes the proceedings of the 12th International Conference on Biomimetic and Biohybrid Systems, Living Machines 2022, in Genoa, Italy, held in July 19–22, 2022. The 44 full papers and 14 short papers presented were carefully reviewed and selected from 67 submissions. They deal with research on novel life-like technologies inspired by the scientific investigation of biological systems, biomimetics, and research that seeks to interface biological and artificial systems to create biohybrid systems. The conference aims to highlight the most exciting research in both fields united by the theme of “Living Machines.”
Engineered Biomimicry covers a broad range of research topics in the emerging discipline of biomimicry. Biologically inspired science and technology, using the principles of math and physics, has led to the development of products as ubiquitous as VelcroTM (modeled after the spiny hooks on plant seeds and fruits). Readers will learn to take ideas and concepts like this from nature, implement them in research, and understand and explain diverse phenomena and their related functions. From bioinspired computing and medical products to biomimetic applications like artificial muscles, MEMS, textiles and vision sensors, Engineered Biomimicry explores a wide range of technologies informed by living natural systems. Engineered Biomimicry helps physicists, engineers and material scientists seek solutions in nature to the most pressing technical problems of our times, while providing a solid understanding of the important role of biophysics. Some physical applications include adhesion superhydrophobicity and self-cleaning, structural coloration, photonic devices, biomaterials and composite materials, sensor systems, robotics and locomotion, and ultra-lightweight structures. - Explores biomimicry, a fast-growing, cross-disciplinary field in which researchers study biological activities in nature to make critical advancements in science and engineering - Introduces bioinspiration, biomimetics, and bioreplication, and provides biological background and practical applications for each - Cutting-edge topics include bio-inspired robotics, microflyers, surface modification and more
A text that makes the mathematical underpinnings of robot motion accessible and relates low-level details of implementation to high-level algorithmic concepts. Robot motion planning has become a major focus of robotics. Research findings can be applied not only to robotics but to planning routes on circuit boards, directing digital actors in computer graphics, robot-assisted surgery and medicine, and in novel areas such as drug design and protein folding. This text reflects the great advances that have taken place in the last ten years, including sensor-based planning, probabalistic planning, localization and mapping, and motion planning for dynamic and nonholonomic systems. Its presentation makes the mathematical underpinnings of robot motion accessible to students of computer science and engineering, rleating low-level implementation details to high-level algorithmic concepts.
Robotic engineering inspired by biology—biomimetics—has many potential applications: robot snakes can be used for rescue operations in disasters, snake-like endoscopes can be used in medical diagnosis, and artificial muscles can replace damaged muscles to recover the motor functions of human limbs. Conversely, the application of robotics technology to our understanding of biological systems and behaviors—biorobotic modeling and analysis—provides unique research opportunities: robotic manipulation technology with optical tweezers can be used to study the cell mechanics of human red blood cells, a surface electromyography sensing system can help us identify the relation between muscle forces and hand movements, and mathematical models of brain circuitry may help us understand how the cerebellum achieves movement control. Biologically Inspired Robotics contains cutting-edge material—considerably expanded and with additional analysis—from the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). These 16 chapters cover both biomimetics and biorobotic modeling/analysis, taking readers through an exploration of biologically inspired robot design and control, micro/nano bio-robotic systems, biological measurement and actuation, and applications of robotics technology to biological problems. Contributors examine a wide range of topics, including: A method for controlling the motion of a robotic snake The design of a bionic fitness cycle inspired by the jaguar The use of autonomous robotic fish to detect pollution A noninvasive brain-activity scanning method using a hybrid sensor A rehabilitation system for recovering motor function in human hands after injury Human-like robotic eye and head movements in human–machine interactions A state-of-the-art resource for graduate students and researchers in the fields of control engineering, robotics, and biomedical engineering, this text helps readers understand the technology and principles in this emerging field.
Nature is the world's foremost designer. With billions of years of experience and boasting the most extensive laboratory available, it conducts research in every branch of engineering and science. Nature's designs and capabilities have always inspired technology, from the use of tongs and tweezers to genetic algorithms and autonomous legged robots.
This book constitutes the proceedings of the 11th International Conference on Biomimetic and Biohybrid Systems, Living Machines 2022, held as virtual event, in July 19–22, 2022. The conference was held virtually due to the COVID-19 crisis. The 30 full papers and 8 short papers presented were carefully reviewed and selected from 48 submissions. They deal with research on novel life-like technologies inspired by the scientific investigation of biological systems; biomimetics; and research that seeks to interface biological and artificial systems to create biohybrid systems.
The multidisciplinary issues involved in the development of biologically inspired intelligent robots include materials, actuators, sensors, structures, functionality, control, intelligence, and autonomy. This book reviews various aspects ranging from the biological model to the vision for the future.