Download Free Biomimetic Polymers For Chiral Resolution And Antifreeze Applications Book in PDF and EPUB Free Download. You can read online Biomimetic Polymers For Chiral Resolution And Antifreeze Applications and write the review.

Bio-mimicry is fundamental idea "How to mimic the Nature" by various methodologies as well as new ideas or suggestions on the creation of novel materials and functions. This book comprises seven sections on various perspectives of bio-mimicry in our life; Section 1 gives an overview of modeling of biomimetic materials; Section 2 presents a processing and design of biomaterials; Section 3 presents various aspects of design and application of biomimetic polymers and composites are discussed; Section 4 presents a general characterization of biomaterials; Section 5 proposes new examples for biomimetic systems; Section 6 summarizes chapters, concerning cells behavior through mimicry; Section 7 presents various applications of biomimetic materials are presented. Aimed at physicists, chemists and biologists interested in biomineralization, biochemistry, kinetics, solution chemistry. This book is also relevant to engineers and doctors interested in research and construction of biomimetic systems.
This book focuses on the chemistry of additives for high performance applications and a large number of chemical formulas are displayed in the text. The additives applications include: Analysis and separation techniques, such as high performance liquid chromatography, for example ionic liquids. Additives for electrical applications, such as capacitors, electrokinetic micropumps, lithium-ion batteries, and other battery types. Additives for solar cells for control of the active layer nanomorphology are documented as are additives for electrolyte membranes, fuel cells, such as membrane exchange humidifiers and coolant additives. Medical applications include high performance additives for the manufacture of scaffolds, controlled drug release, and nanofibers. Additives for lubricants including the deposit control, anti-wear additives, fluid loss control additives in drilling applications. Additives for concrete uses such as set retarders, curing accelerators, defoamers, permeability control additives, and corrosion protection additives.
Supramolecular chemistry, "the chemistry beyond the molecule", is a fascinating realm of modern science. The design of novel supramolecular structures, surfaces, and techniques are at the forefront of research in different application areas, including corrosion and biofouling protection. A team of international experts provide a comprehensive view of the applications and potential of supramolecular chemistry in corrosion and biofouling prevention. Chapter topics include types and fundamentals of supramolecules, supramolecular polymers and gels, host-guest inclusion compounds, organic-inorganic hybrid materials, metallo-assemblies, cyclodextrins, crown ethers, mesoporous silica and supramolecular structures of graphene and other advances. Additional Features include: Focuses on different aspects of supramolecular chemistry in corrosion and biofouling prevention. Comprehensively covers supramolecular interactions that can provide better corrosion and biofouling protection. Provides the latest developments in self-healing coatings. Explores recent research advancements in the suggested area. Includes case studies specific to industries. The different supramolecular approaches being investigated to control corrosion and biofouling are gathered in one well-organized reference to serve senior undergraduate and graduate students, research students, engineers, and researchers in the fields of corrosion science & engineering, biofouling, and protective coatings.
The only standard reference in this exciting new field combines the physical, chemical and material science perspectives in a synergic way. This monograph traces the development of the preparative methods employed to create nanostructures, in addition to the experimental techniques used to characterize them, as well as some of the surprising physical effects. The chapters cover every category of material, from organic to coordination compounds, metals and composites, in zero, one, two and three dimensions. The book also reviews structural, chemical, optical, and other physical properties, finishing with a look at the future for chiral nanosystems.
Molecularly Imprinted Catalysts: Principle, Synthesis, and Applications is the first book of its kind to provide an in-depth overview of molecularly imprinted catalysts and selective catalysis, including technical details, principles of selective catalysis, preparation processes, the catalytically active polymers themselves, and important progress made in this field. It serves as an important reference for scientists, students, and researchers who are working in the areas of molecular imprinting, catalysis, molecular recognition, materials science, biotechnology, and nanotechnology.Comprising a diverse group of experts from prestigious universities and industries across the world, the contributors to this book provide access to the latest knowledge and eye-catching achievements in the field, and an understanding of what progress has been made and to what extent it is being advanced in industry. - The first book in the field on molecularly imprinted catalysts (MIPs) - Provides a systematic background to selective catalysis, especially the basic concepts and key principles of the different MIP-based catalysts - Features state-of-the art presentation of preparation methods and applications of MIPs - Written by scientists from prestigious universities and industries across the world, and edited by veteran researchers in molecular imprinting and selective catalysis
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
This book reviews and characterises promising single-compound solvents, solvent blends and advanced solvent systems suitable for CO2 capture applications using gas-liquid absorption. Focusing on energy efficient solvents with minimal adverse environmental impact, the contributions included analyse the major technological advantages, as well as research and development challenges of promising solvents and solvent systems in various sustainable CO2 capture applications. It provides a valuable source of information for undergraduate and postgraduate students, as well as for chemical engineers and energy specialists.
Magnetic Nanoparticle-Based Hybrid Materials: Fundamentals and Applications introduces the principles, properties, and emerging applications of this important materials system. The hybridization of magnetic nanoparticles with metals, metal oxides and semiconducting nanoparticles may result in superior properties. The book reviews the most relevant hybrid materials, their mechanisms and properties. Then, the book focuses on the rational design, controlled synthesis, advanced characterizations and in-depth understanding of structure-property relationships. The last part addresses the promising applications of hybrid nanomaterials in the real world such as in the environment, energy, medicine fields. Magnetic Nanoparticle-Based Hybrid Materials: Fundamentals and Applications comprehensively reviews both the theoretical and experimental approaches used to rapidly advance nanomaterials that could result in new technologies that impact day-to-day life and society in key areas such as health and the environment. It is suitable for researchers and practitioners who are materials scientists and engineers, chemists or physicists in academia and R&D. - Provides in-depth information on the basic principles of magnetic nanoparticles-based hybrid materials such as synthesis, characterization, properties, and magnon interactions - Discusses the most relevant hybrid materials systems including integration of metals, metal oxides, polymers, carbon and more - Addresses the emerging applications in medicine, the environment, energy, sensing, and computing enabled by magnetic nanoparticles-based hybrid materials
The relatively new technique of solid phase microextraction (SPME) is an important tool to prepare samples both in the lab and on-site. SPME is a "green" technology because it eliminates organic solvents from analytical laboratory and can be used in environmental, food and fragrance, and forensic and drug analysis. This handbook offers a thorough background of the theory and practical implementation of SPME. SPME protocols are presented outlining each stage of the method and providing useful tips and potential pitfalls. In addition, devices and fiber coatings, automated SPME systems, SPME method development, and In Vivo applications are discussed. This handbook is essential for its discussion of the latest SPME developments as well as its in depth information on the history, theory, and practical application of the method. - Practical application of Solid Phase Microextraction methods including detailed steps - Provides history of extraction methods to better understand the process - Suitable for all levels, from beginning student to experienced practitioner
The first reports on the application of microwaves in organicsynthesis date back to 1986, but it was not until the recentintroduction of specifically designed and constructed equipment,which countered the safety and reproducibility concerns, thatsynthetic application of microwaves has become established as alaboratory technique. Microwave assisted synthesis is now beingadopted in many industrial and academic laboratories to takeadvantage of the novel chemistry that can be carried out using avariety of organic reaction types. This book demonstrates the underlying principles of microwavedielectric heating and, by reference to a range of organic reactiontypes, it's effective use in synthetic organic chemistry. Toillustrate the impact microwave assisted organic synthesis can haveon chemical research, case studies drawn mainly from thepharmaceutical industry are presented.