Download Free Biomimetic Lipid Membranes Fundamentals Applications And Commercialization Book in PDF and EPUB Free Download. You can read online Biomimetic Lipid Membranes Fundamentals Applications And Commercialization and write the review.

This book compiles the fundamentals, applications and viable product strategies of biomimetic lipid membranes into a single, comprehensive source. It broadens its perspective to interdisciplinary realms incorporating medicine, biology, physics, chemistry, materials science, as well as engineering and pharmacy at large. The book guides readers from membrane structure and models to biophysical chemistry and functionalization of membrane surfaces. It then takes the reader through a myriad of surface-sensitive techniques before delving into cutting-edge applications that could help inspire new research directions. With more than half the world's drugs and various toxins targeting these crucial structures, the book addresses a topic of major importance in the field of medicine, particularly biosensor design, diagnostic tool development, vaccine formulation, micro/nano-array systems, and drug screening/development. Provides fundamental knowledge on biomimetic lipid membranes; Addresses some of biomimetic membrane types, preparation methods, properties and characterization techniques; Explains state-of-art technological developments that incorporate microfluidic systems, array technologies, lab-on-a-chip-tools, biosensing, and bioprinting techniques; Describes the integration of biomimetic membranes with current top-notch tools and platforms; Examines applications in medicine, pharmaceutical industry, and environmental monitoring.
Biological Soft Matter Explore a comprehensive, one-stop reference on biological soft matter written and edited by leading voices in the field Biological Soft Matter: Fundamentals, Properties and Applications delivers a unique and indispensable compilation of up-to-date knowledge and material on biological soft matter. The book presents a thorough overview about biological soft matter, beginning with different substance classes, including proteins, nucleic acids, lipids, and polysaccharides. It goes on to describe a variety of superstructures and aggregated and how they are formed by self-assembly processes like protein folding or crystallization. The distinguished editors have included materials with a special emphasis on macromolecular assembly, including how it applies to lipid membranes, and proteins fibrillization. Biological Soft Matter is a crucial resource for anyone working in the field, compiling information about all important substance classes and their respective roles in forming superstructures. The book is ideal for beginners and experts alike and makes the perfect guide for chemists, physicists, and life scientists with an interest in the area. Readers will also benefit from the inclusion of: An introduction to DNA nano-engineering and DNA-driven nanoparticle assembly Explorations of polysaccharides and glycoproteins, engineered biopolymers, and engineered hydrogels Discussions of macromolecular assemblies, including liquid membranes and small molecule inhibitors for amyloid aggregation A treatment of inorganic nanomaterials as promoters and inhibitors of amyloid fibril formation An examination of a wide variety of natural and artificial polymers Perfect for materials scientists, biochemists, polymer chemists, and protein chemists, Biological Soft Matter: Fundamentals, Properties and Applications will also earn a place in the libraries of biophysicists and physical chemists seeking a one-stop reference summarizing the rapidly evolving topic of biological soft matter.
This book addresses new challenges in soft matter and colloids. It presents timely reports on colloidal self-assembly, soft matters from liquid crystals, nanoparticles in liquid crystals, hydrocolloids, hybrid nanosystems, nanosuspensions, and dispersion of nanoparticles in different media, soft matter processing and modern experiments related with soft matters.
Biomembranes consist of molecular bilayers with many lipid and protein components. The fluidity of these bilayers allows them to respond to different environmental cues by changing their local molecular composition as well as their shape and topology. On the nanometer scale, this multi-responsive behavior can be studied by molecular dynamics simulations, which provide both snapshots and movies of the bilayer conformations. The general conceptual framework for these simulations is provided by the theory of curvature elasticity. The latter theory also explains the behavior of giant vesicles as observed by optical microscopy on the micrometer scale. The present volume describes new insights as obtained from recent developments in analytical theory, computer simulations, and experimental approaches. The seven chapters of the volume are arranged in a bottom-up manner from smaller to larger scales. These chapters address the refined molecular dynamics and multiscale modeling of biomembranes, their morphological complexity and adhesion, the engulfment and endocytosis of nanoparticles, the fusion of giant unilamellar vesicles, as well as recent advances in microfluidic technology applied to model membranes. - Bridging the gap between lipid molecules and giant unilamellar vesicles (GUVs) - Integrated view obtained from analytical theory, computer simulations, and experimental observations - Multiresponsive behavior and morphological complexity of biomembranes
The demand for safe and healthy foods by consumers has increased the interest in developing new food processing techniques over the past decades. Emerging technologies and techniques are not just working to increase the shelf life of food but are also functioning to maintain the same quality of the food that makes it desirable in the first place. Emerging Techniques for Food Processing and Preservation is an essential guide for professionals and researchers in the food industry who seek to stay updated on the latest advancements in food processing and preservation techniques. This comprehensive book explores cutting-edge technologies that can enhance the quality and safety of food products while also improving their shelf life. With contributions from leading experts in the field, this book covers a wide range of topics, including Electrodialysis, Refractance Window Technology, Cold Plasma, Bio Speckle Laser Technique, Nanofluids, and many others. Each chapter includes detailed explanations of the principles behind these emerging techniques, as well as case studies that demonstrate their practical applications. In this book, readers will gain insights into the principles behind these emerging techniques, their advantages and limitations, and the practical applications in various food products. Whether you are a food scientist, engineer, or a food industry professional, this book will help you stay at the forefront of the rapidly evolving landscape of food processing and preservation.
Future Foods: Global Trends, Opportunities, and Sustainability Challenges highlights trends and sustainability challenges along the entire agri-food supply chain. Using an interdisciplinary approach, this book addresses innovations, technological developments, state-of-the-art based research, value chain analysis, and a summary of future sustainability challenges. The book is written for food scientists, researchers, engineers, producers, and policy makers and will be a welcomed reference. - Provides practical solutions for overcoming recurring sustainability challenges along the entire agri-food supply chain - Highlights potential industrial opportunities and supports circular economy concepts - Proposes novel concepts to address various sustainability challenges that can affect and have an impact on the future generations
After the drug discovery and development process, designing suitable formulations to safely deliver the optimum dose, while avoiding side effects, has been a constant challenge, especially when drugs are very toxic and have poor solubility and undesirable clearance profiles. With recent advances in synthetic technologies, nanoparticles can be custom-made from a variety of advanced materials to mimic the bioenvironment and can be equipped with various targeting and imaging moieties for site-specific delivery and real-time imaging. Drug Delivery Using Nanomaterials covers advancements in the field of nanoparticle-based drug-delivery systems, along with all the aspects needed for a successful and marketable nanoformulation. FEATURES Offers a general overview of the entire process involved in the synthesis and characterization of pharmaceutical nanoparticles Covers a broad range of synthetic materials for developing nanoformulations customized for specific disease states, target organs, and drugs Every chapter sequentially builds, providing a progressive pathway from classical nanoparticles to the more advanced to be used as a full drug product by consumers Provides information in a bottom-up manner in that definitions and explanations of relevant background information serve as a framework for understanding advanced concepts This user-friendly reference is aimed at materials engineers, chemical engineers, biomedical engineers, pharmaceutical scientists, chemists, and others working on advanced drug delivery, from academia as well as industry.
Advancements in Polymer-Based Membranes for Water Remediation describes the advanced membrane science and engineering behind the separation processes within the domain of polymer-based membrane systems in water remediation. Emphasis has been put on several aspects, ranging from fundamental concepts to the commercialization of pressure and potential driven membranes, updated with the latest technological progresses, and relevant polymer materials and application potential towards water treatment systems. Also included in this book are advances in polymers for membrane application in reverse osmosis, nanofiltration, ultrafiltration, microfiltration, forward osmosis, and polymeric ion-exchange membranes for electrodialysis and capacitive deionization. With its critical analyzes and opinions from experts around the world, this book will garner considerable interest among actual users, i.e., scientists, engineers, industrialists, entrepreneurs and students. - Evaluates water remediation using pressure driven and potential driven membrane processes - Reviews emerging polymer systems for membranes preparation - Offers a comprehensive analysis in the development of polymer-based membranes and their applications in water remediation - Analyzes membrane performance parameters to evaluate separation efficiency for various water pollutants - Covers concept-to-commercialization aspects of polymer-based membranes in terms of water purification, pollutant removal, stability and scalability
The term biomimetic is comparatively new on the chemical scene, but the concept has been utilized by chemists for many years. Furthermore, the basic idea of making a synthetic material that can imitate the func tions of natural materials probably could be traced back into antiquity. From the dawn of creation, people have probably attempted to duplicate or modify the activities of the natural world. (One can even find allusions to these attempts in the Bible; e. g. , Genesis 30. ) The term "mimetic" means to imitate or mimic. The word "mimic" means to copy closely, or to imitate accurately. Biomimetic, which has not yet entered most dictionaries, means to imitate or mimic some specific bio logical function. Usually, the objective of biomimetics is to form some useful material without the need of utilizing living systems. In a simi lar manner, the term biomimetic polymers means creating synthetic poly mers which imitate the activity of natural bioactive polymers. This is a major advance in polymer chemistry because the natural bioactive polymers are the basis of life itself. Thus, biomimetic polymers imitate the life process in many ways. This present volume delineates some of the recent progress being made in this vast field of biomimetic polymers. Chemists have been making biomimetic polymers for more than fifty years, although this term wasn't used in the early investigations.