Download Free Biomedical Membranes And Bioartificial Organs Book in PDF and EPUB Free Download. You can read online Biomedical Membranes And Bioartificial Organs and write the review.

This book focusses on the development of biomedical membranes and their applications for (bio)artificial organs. It covers the state of art and main challenges for applying synthetic membranes in these organs. It also highlights the importance of accomplishing an integration of engineering with biology and medicine to understand and manage the scientific, industrial, clinical and ethical aspects of these organs.The compendium consists of 11 chapters, written by world renowned experts in the fields of membrane technology, biomaterials science and technology, cell biology, medicine and engineering. Every chapter describes the clinical needs and the materials, membranes, and concepts required for the successful development of the (bio)artificial organs.This text is suitable for undergraduate and graduate students in biomedical engineering, materials science and membrane science and technology, as well as, for professionals and researchers working in these fields.
This is the first time that human organs, such as the heart, liver, kidney, stomach, uterus, skin, lung, pancreas and breast can be manufactured automatically and precisely for clinical transplantation, drug screening and metabolism model establishment. Headed by Professor Xiaohong Wang (also the founder and director) in the Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, this group has focused on organ manufacturing for over ten years. A series of technical bottleneck problems, such as vascular and nerve system establishment in a construct, multiple cell types and material system incorporation, and stem cell sequential engagement, have been overcome one by one. Two technical approaches have been exploited extensively. One is multiple nozzle rapid prototyping (RP), additive manufacturing (AM), or three-dimension (3D) printing. The other is combined mold systems. More than 110 articles and 40 patents with a series of theories and practices have been published consequently. In the future, all the failed organs (including the brain) in the human body can be substituted easily like a small accessory part in a car. Everyone can get benefit from these techniques, which ultimately means that the lifespan of humans, therefore, can be greatly prolonged from this time point. This book examines the progress made in the field and the developments made by these researchers (and authors) in the field.
A Cutting-Edge Guide to Applying Transport Phenomena Principles to Bioengineering Systems Transport Phenomena in Biomedical Engineering: Artificial Order Design and Development and Tissue Engineering explains how to apply the equations of continuity, momentum, energy, and mass to human anatomical systems. This authoritative resource presents solutions along with term-by-term medical significance. Worked exercises illustrate the equations derived, and detailed case studies highlight real-world examples of artificial organ design and human tissue engineering. Coverage includes: Fundamentals of fluid mechanics and principles of molecular diffusion Osmotic pressure, solvent permeability, and solute transport Rheology of blood and transport Gas transport Pharmacokinetics Tissue design Bioartificial organ design and immunoisolation Bioheat transport 541 end-of-chapter exercises and review questions 106 illustrations 1,469 equations derived from first principles
This text combines the basic principles and theories of transport in biological systems with fundamental bioengineering. It contains real world applications in drug delivery systems, tissue engineering, and artificial organs. Considerable significance is placed on developing a quantitative understanding of the underlying physical, chemical, and biological phenomena. Therefore, many mathematical methods are developed using compartmental approaches. The book is replete with examples and problems.
Integrated Membrane Reactors explores recent developments and future perspectives in the area of membrane reactor (MR) systems. It includes fundamental principles, the different types of membrane materials (such as polymeric and inorganic), the different types of membrane reactors (such as Micro MRs, Enzymatic MRS, Photo-catalytic MRs, Pervaporation MRs, Electrochemical MRs, etc.), their industrial perspective and, finally, there also is an economic evaluation of the metallic MRs. The book provides an extensive review in the area of MRs for each kind of application present in the specialized literature and discusses their modelling and design approaches necessary for MR systems validation in achieving high conversions, energy savings, high yields and high hydrogen (or others) products of the reactions studied. - Includes membrane preparation and characterization - Describes all the kinds of membrane reactors today under study - Focuses on many applications of membrane reactors in the area of chemical and biochemical engineering - Discusses simulation of membrane reactors enabling their design - Introduces the concepts of process intensification and process integration - Illustrates all the advantages of membrane reactors with respect to the so-called traditional/convention reactor
An important resource that puts the focus on the chemical engineering aspects of biomedical engineering In the past 50 years remarkable achievements have been advanced in the fields of biomedical and chemical engineering. With contributions from leading chemical engineers, Biomedical Engineering Challenges reviews the recent research and discovery that sits at the interface of engineering and biology. The authors explore the principles and practices that are applied to the ever-expanding array of such new areas as gene-therapy delivery, biosensor design, and the development of improved therapeutic compounds, imaging agents, and drug delivery vehicles. Filled with illustrative case studies, this important resource examines such important work as methods of growing human cells and tissues outside the body in order to repair or replace damaged tissues. In addition, the text covers a range of topics including the challenges faced with developing artificial lungs, kidneys, and livers; advances in 3D cell culture systems; and chemical reaction methodologies for biomedical imagining analysis. This vital resource: Covers interdisciplinary research at the interface between chemical engineering, biology, and chemistry Provides a series of valuable case studies describing current themes in biomedical engineering Explores chemical engineering principles such as mass transfer, bioreactor technologies as applied to problems such as cell culture, tissue engineering, and biomedical imaging Written from the point of view of chemical engineers, this authoritative guide offers a broad-ranging but concise overview of research at the interface of chemical engineering and biology.
Membrane techniques are an excellent alternative to traditional methods of purification and separation. This book covers issues related to the most recent developments in the field of membrane techniques. The latest scientific research and their potential applications in industrial solutions are described. In addition, currents trends in food & beverages technologies, and biomedicine are discussed. Moreover, the book emphasizes recent advancements in design of membrane systems, used either for separation or creation of mixtures, from the perspective of industry 4.0 and data management.
The success of any implant or medical device depends very much on the biomaterial used. Synthetic materials (such as metals, polymers and composites) have made significant contributions to many established medical devices. The aim of this book is to provide a basic understanding on the engineering and processing aspects of biomaterials used in medical applications. Of paramount importance is the tripartite relationship between material properties, processing methods and design. As the target audiences cover a wide interdisciplinary field, each chapter is written with a detailed background so that audience of another discipline will be able to understand. For the more knowledgeable reader, a detailed list of references is included.
A wide variety of materials is being used in biomedical engineering for various functions. This includes a range of ceramics, polymers and metallic materials for implants and medical devices. A major question is how these materials will perform inside the body, which is very sensitive to alien materials. The material must not only survive to perform its intended function but also not initiate any damage to the surrounding tissue or induce a wider health problem. The service characteristics of implanted materials are of vital concern to health treatments that alleviate ageing.This book collates information and provides a concise text on the performance of different materials used in devices and implants. The knowledge presented is critical for a biomedical engineer, especially for the purpose of selecting the right materials. In addition, topics such as allergies and infection, tissue scaffolds, and drug delivery are reviewed.
Despite a large number of books related to membrane technology and membrane processes, books specifically intended for and focused on fibers used in membrane applications are still lacking. Since the development of the first modules, hollow fibers have totally revolutionized the world of membranes--thanks to the new technological breakthroughs and innovative materials discovered. The importance of a book putting hollow fibers in the spotlight owes to this type of configuration being more and more appreciated, particularly in large-scale applications. Moreover, the advent of nanofibers has injected new vitality in biomedical research, in air and water separation and filtration processes, and in the emerging areas of nanotechnology. This book singles out and highlights the unique properties that hollow fibers and nanofibers display both in the fields where they already represent the dominant configuration and in the areas where their full exploitation is still hindered by economic and technological constraints.