Download Free Biomass Volume Estimation And Valorization For Energy Book in PDF and EPUB Free Download. You can read online Biomass Volume Estimation And Valorization For Energy and write the review.

This book is the outcome of contributions by many experts in the field from different disciplines, various backgrounds, and diverse expertise. This book provides information on biomass volume calculation methods and biomass valorization for energy production. The chapters presented in this book include original research and review articles. I hope the research presented in this book will help to advance the use of biomass for bioenergy production and valorization. The key features of the book are: Providing information on biomass volume estimation using direct, nondestructive and remote sensing methods Biomass valorization for energy using thermochemical (gasification and pyrolysis) and biochemical (fermentation) conversion processes.
Reviews the latest advances in biofuel manufacturing technologies and discusses the deployment of other renewable energy for transportation Aimed at providing an interface useful to business and scientific managers, this book focuses on the key challenges that still impede the realization of the billion-ton renewable fuels vision. It places great emphasis on a global view of the topic, reviewing deployment and green energy technology in different countries across Africa, Asia, South America, the EU, and the USA. It also integrates scientific, technological, and business development perspectives to highlight the key developments that are necessary for the global replacement of fossil fuels with green energy solutions. Green Energy to Sustainability: Strategies for Global Industries examines the most recent developments in biofuel manufacturing technologies in light of business, financial, value chain, and supply chain concerns. It also covers the use of other renewable energy sources like solar energy for transportation and proposes a view of the challenges over the next two to five decades, and how these will deeply modify the industrial world in the third millennium. The coming of age of electric vehicles is also looked at, as is the impact of their deployment on the biomass to biofuels value chain. Offers extensive updates on the field of green energy for global industries Covers the structure of the energy business; chemicals and diesel from biomass; ethanol and butanol; hydrogen and methane; and more Provides an expanded focus on the next generation of energy technologies Reviews the latest advances in biofuel manufacturing technologies Integrates scientific, technological and business perspectives Highlights important developments needed for replacing fossil fuels with green energy Green Energy to Sustainability: Strategies for Global Industries will appeal to academic researchers working on the production of fuels from renewable feedstocks and those working in green and sustainable chemistry, and chemical/process engineering. It is also an excellent textbook for courses in bioprocessing technology, renewable resources, green energy, and sustainable chemistry.
This book covers topics related to bioenergy production from various biomass sources, including agricultural residues and waste biomass from both domestic and industrial use. It includes useful data, illustrations, and case studies of bioenergy production facilities. The contents of this book will be of interest to readers looking to scale up production and evaluate the selection and optimization of resources in order to overcome the current limitations of biomass to bioenergy conversions. The book will be of interest to researchers and industry professional alike.
"Chapters will specifically focus on the production of fuels and chemicals from lignin."--Page [4] of cover.
This book is a comprehensive overview of the forest bioenergy, from feedstock production to end products. The book presents the state of the art of forest biomass production, assessment, characterization, and conversion into heat and power. It starts with forest sources of biomass and potential availability. Continues with the characterization of the forest stands and the availability of biomass for energy per stand structure, including stands managed for timber, non-wood products, and energy plantations. It follows with biomass evaluation and monitoring considering data sources, modeling methods, and existing models. are also addressed. After the initial focus on forest biomass production and estimation, this resource is assessed as a feedstock for energy conversion. Not only current, but also emerging biofuels obtained from forest biomass are considered. Established and emerging conversion technologies for the production of bio-heat and bio-power are examined and the impacts of the conversion systems presented.
Valorization of Agri-Food Wastes and By-Products: Recent Trends, Innovations and Sustainability Challenges addresses the waste and by-product valorization of fruits and vegetables, beverages, nuts and seeds, dairy and seafood. The book focuses its coverage on bioactive recovery, health benefits, biofuel production and environment issues, as well as recent technological developments surrounding state of the art of food waste management and innovation. The book also presents tools for value chain analysis and explores future sustainability challenges. In addition, the book offers theoretical and experimental information used to investigate different aspects of the valorization of agri-food wastes and by-products. Valorization of Agri-Food Wastes and By-Products: Recent Trends, Innovations and Sustainability Challenges will be a great resource for food researchers, including those working in food loss or waste, agricultural processing, and engineering, food scientists, technologists, agricultural engineers, and students and professionals working on sustainable food production and effective management of food loss, wastes and by-products. - Covers recent trends, innovations, and sustainability challenges related to food wastes and by-products valorization - Explores various recovery processes, the functionality of targeted bioactive compounds, and green processing technologies - Presents emerging technologies for the valorization of agri-food wastes and by-products - Highlights potential industrial applications of food wastes and by-products to support circular economy concepts
The success of lignocellulosic biofuels and biochemical industries depends upon an economic and reliable supply of quality biomass. However, research and development efforts have historically focused on the utilization of agriculturally-derived, cellulosic feedstocks without consideration of their low energy density, high variations in physical and chemical characteristics and potential supply risks in terms of availability and affordability. This Research Topic will explore strategies that enable supply chain improvements in biomass quality and consistency through blending, preprocessing, diversity and landscape design for development of conversion-ready, lignocellulosic feedstocks for production of biofuels and bio-products. Biomass variability has proven a formidable challenge to the emerging biorefining industry, impeding continuous operation and reducing yields required for economical production of lignocellulosic biofuels at scale. Conventional supply systems lack the preprocessing capabilities necessary to ensure consistent biomass feedstocks with physical and chemical properties that are compatible with supply chain operations and conversion processes. Direct coupling of conventional feedstock supply systems with sophisticated conversion systems has reduced the operability of biorefining processes to less than 50%. As the bioeconomy grows, the inherent variability of biomass resources cannot be managed by passive means alone. As such, there is a need to fully recognize the magnitude of biomass variability and uncertainty, as well as the cost of failing to design feedstock supply systems that can mitigate biomass variability and uncertainty. A paradigm shift is needed, from biorefinery designs using raw, single-resource biomass, to advanced feedstock supply systems that harness diverse biomass resources to enable supply chain resilience and development of conversion-ready feedstocks. Blending and preprocessing (e.g., drying, sorting, sizing, fractionation, leaching, densification, etc.) can mitigate variable quality and performance in diverse resources when integrated with downstream conversion systems. Decoupling feedstock supply from biorefining provides an opportunity to manage supply risks and incorporate value-added upgrading to develop feedstocks with improved convertibility and/ or market fungibility. Conversion-ready feedstocks have undergone the required preprocessing to ensure compatibility with conversion and utilization prior to delivery at the biorefinery and represent lignocellulosic biomass with physical and chemical properties that are tailored to meet the requirements of industrially-relevant handling and conversion systems.
This monograph discusses the various biomass feedstocks currently available for biofuels production, and mechanical preprocessing technologies to reduce the feedstock variability for biofuels applications. Variability in the properties of biomass—in terms of moisture, particle size distribution, and low-density—results in storage, transportation, handling, and feeding issues. Currently, biorefineries face serious particle bridging issues, uneven discharge, jamming of equipment, and transportation problems. These issues must be solved in order for smooth operations to be possible. Mechanical preprocessing technologies, such as size reduction, densification, and moisture management using drying and dewatering, can help to overcome these issues. Many densification systems exist that will assist in converting low-density biomass to a high-density commodity type feedstock. In 6 chapters, the impact of densification process variables, such as temperature, pressure, moisture, etc., on biomass particle agglomeration, the quality of the densified products, and the overall energy consumption of the process are discussed, as are the various compression models for powders that can be used for biomass particles agglomeration behavior and optimization of the densification process using statistical and evolutionary methods. The suitability of these densified products for biochemical and thermochemical conversion pathways is also discussed, as well as the various international standards (CEN and ISO) they must adhere to. The author has worked on biomass preprocessing at Idaho National Laboratory for the last ten years. He is the principal investigator for the U.S. Department of Energy Bioenergy Technologies Office-funded “Biomass Size Reduction and Densification” project. He has developed preprocessing technologies to reduce cost and improve quality. The author has published many papers and books focused on biomass preprocessing and pretreatments. Biomass process engineers and biorefinery managers can benefit from this book. Students in chemical, mechanical, biological, and environmental engineering can also use the book to understand preprocessing technologies, which greatly assist in improving the biomass critical material attributes. The book can help policymakers and energy systems planners to understand the biomass properties limitations and technologies to overcome the same.
This book presents an authoritative and comprehensive overview of the production and use of microalgal biomass and bioproducts for energy generation. It also offers extensive information on engineering approaches to energy production, such as process integration and process intensification in harnessing energy from microalgae. Issues related to the environment, food, chemicals and energy supply pose serious threats to nations’ success and stability. The challenge to provide for a rapidly growing global population has made it imperative to find new technological routes to increase the production of consumables while also bearing in mind the biosphere’s ability to regenerate resources. Microbial biomass is a bioresource that provides effective solutions to these challenges. Divided into eight parts, the book explores microalgal production systems, life cycle assessment and the bio-economy of biofuels from microalgae, process integration and process intensification applied to microalgal biofuels production. In addition, it discusses the main fuel products obtained from microalgae, summarizing a range of useful energy products derived from algae-based systems, and outlines future developments. Given the book’s breadth of coverage and extensive bibliography, it offers an essential resource for researchers and industry professionals working in renewable energy.