Download Free Biomarker Tests For Molecularly Targeted Therapies Book in PDF and EPUB Free Download. You can read online Biomarker Tests For Molecularly Targeted Therapies and write the review.

Every patient is unique, and the evolving field of precision medicine aims to ensure the delivery of the right treatment to the right patient at the right time. In an era of rapid advances in biomedicine and enhanced understanding of the genetic basis of disease, health care providers increasingly have access to advanced technologies that may identify molecular variations specific to an individual patient, which subsequently can be targeted for treatment. Known as biomarker tests for molecularly targeted therapies, these complex tests have the potential to enable the selection of the most beneficial treatment (and also to identify treatments that may be harmful or ineffective) for the molecular underpinnings of an individual patient's disease. Such tests are key to unlocking the promise of precision medicine. Biomarker tests for molecularly targeted therapies represent a crucial area of focus for developing methods that could later be applicable to other areas of precision medicine. The appropriate regulatory oversight of these tests is required to ensure that they are accurate, reliable, properly validated, and appropriately implemented in clinical practice. Moreover, common evidentiary standards for assessing the beneficial impact of biomarker-guided therapy selection on patient outcomes, as well as the effective collection and sharing of information related to those outcomes, are urgently needed to better inform clinical decision making. Biomarker Tests of Molecularly Targeted Therapies examines opportunities for and challenges to the use of biomarker tests to select optimal therapy and offers recommendations to accelerate progress in this field. This report explores regulatory issues, reimbursement issues, and clinical practice issues related to the clinical development and use of biomarker tests for targeting therapies to patients. Properly validated, appropriately implemented biomarker tests hold the potential to enhance patient care and improve outcomes, and therefore addressing the challenges facing such tests is critical.
Many cancer patients are diagnosed at a stage in which the cancer is too far advanced to be cured, and most cancer treatments are effective in only a minority of patients undergoing therapy. Thus, there is tremendous opportunity to improve the outcome for people with cancer by enhancing detection and treatment approaches. Biomarkers will be instrumental in making that transition. Advances in biotechnology and genomics have given scientists new hope that biomarkers can be used to improve cancer screening and detection, to improve the drug development process, and to enhance the effectiveness and safety of cancer care by allowing physicians to tailor treatment for individual patients—an approach known as personalized medicine. However, progress overall has been slow, despite considerable effort and investment, and there are still many challenges and obstacles to overcome before this paradigm shift in oncology can become a reality.
Discover how biomarkers can boost the success rate of drug development efforts As pharmaceutical companies struggle to improve the success rate and cost-effectiveness of the drug development process, biomarkers have emerged as a valuable tool. This book synthesizes and reviews the latest efforts to identify, develop, and integrate biomarkers as a key strategy in translational medicine and the drug development process. Filled with case studies, the book demonstrates how biomarkers can improve drug development timelines, lower costs, facilitate better compound selection, reduce late-stage attrition, and open the door to personalized medicine. Biomarkers in Drug Development is divided into eight parts: Part One offers an overview of biomarkers and their role in drug development. Part Two highlights important technologies to help researchers identify new biomarkers. Part Three examines the characterization and validation process for both drugs and diagnostics, and provides practical advice on appropriate statistical methods to ensure that biomarkers fulfill their intended purpose. Parts Four through Six examine the application of biomarkers in discovery, preclinical safety assessment, clinical trials, and translational medicine. Part Seven focuses on lessons learned and the practical aspects of implementing biomarkers in drug development programs. Part Eight explores future trends and issues, including data integration, personalized medicine, and ethical concerns. Each of the thirty-eight chapters was contributed by one or more leading experts, including scientists from biotechnology and pharmaceutical firms, academia, and the U.S. Food and Drug Administration. Their contributions offer pharmaceutical and clinical researchers the most up-to-date understanding of the strategies used for and applications of biomarkers in drug development.
Many people naturally assume that the claims made for foods and nutritional supplements have the same degree of scientific grounding as those for medication, but that is not always the case. The IOM recommends that the FDA adopt a consistent scientific framework for biomarker evaluation in order to achieve a rigorous and transparent process.
Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.
Every patient is unique, and the evolving field of precision medicine aims to ensure the delivery of the right treatment to the right patient at the right time. In an era of rapid advances in biomedicine and enhanced understanding of the genetic basis of disease, health care providers increasingly have access to advanced technologies that may identify molecular variations specific to an individual patient, which subsequently can be targeted for treatment. Known as biomarker tests for molecularly targeted therapies, these complex tests have the potential to enable the selection of the most beneficial treatment (and also to identify treatments that may be harmful or ineffective) for the molecular underpinnings of an individual patient's disease. Such tests are key to unlocking the promise of precision medicine. Biomarker tests for molecularly targeted therapies represent a crucial area of focus for developing methods that could later be applicable to other areas of precision medicine. The appropriate regulatory oversight of these tests is required to ensure that they are accurate, reliable, properly validated, and appropriately implemented in clinical practice. Moreover, common evidentiary standards for assessing the beneficial impact of biomarker-guided therapy selection on patient outcomes, as well as the effective collection and sharing of information related to those outcomes, are urgently needed to better inform clinical decision making. Biomarker Tests of Molecularly Targeted Therapies examines opportunities for and challenges to the use of biomarker tests to select optimal therapy and offers recommendations to accelerate progress in this field. This report explores regulatory issues, reimbursement issues, and clinical practice issues related to the clinical development and use of biomarker tests for targeting therapies to patients. Properly validated, appropriately implemented biomarker tests hold the potential to enhance patient care and improve outcomes, and therefore addressing the challenges facing such tests is critical.
This open access book gives an overview of the sessions, panel discussions, and outcomes of the Advancing the Science of Cancer in Latinos conference, held in February 2018 in San Antonio, Texas, USA, and hosted by the Mays Cancer Center and the Institute for Health Promotion Research at UT Health San Antonio. Latinos – the largest, youngest, and fastest-growing minority group in the United States – are expected to face a 142% rise in cancer cases in coming years. Although there has been substantial advancement in cancer prevention, screening, diagnosis, and treatment over the past few decades, addressing Latino cancer health disparities has not nearly kept pace with progress. The diverse and dynamic group of speakers and panelists brought together at the Advancing the Science of Cancer in Latinos conference provided in-depth insights as well as progress and actionable goals for Latino-focused basic science research, clinical best practices, community interventions, and what can be done by way of prevention, screening, diagnosis, and treatment of cancer in Latinos. These insights have been translated into the chapters included in this compendium; the chapters summarize the presentations and include current knowledge in the specific topic areas, identified gaps, and top priority areas for future cancer research in Latinos. Topics included among the chapters: Colorectal cancer disparities in Latinos: Genes vs. Environment Breast cancer risk and mortality in women of Latin American origin Differential cancer risk in Latinos: The role of diet Overcoming barriers for Latinos on cancer clinical trials Es tiempo: Engaging Latinas in cervical cancer research Emerging policies in U.S. health care Advancing the Science of Cancer in Latinos proves to be an indispensable resource offering key insights into actionable targets for basic science research, suggestions for clinical best practices and community interventions, and novel strategies and advocacy opportunities to reduce health disparities in Latino communities. It will find an engaged audience among researchers, academics, physicians and other healthcare professionals, patient advocates, students, and others with an interest in the broad field of Latino cancer.
Group sequential methods answer the needs of clinical trial monitoring committees who must assess the data available at an interim analysis. These interim results may provide grounds for terminating the study-effectively reducing costs-or may benefit the general patient population by allowing early dissemination of its findings. Group sequential methods provide a means to balance the ethical and financial advantages of stopping a study early against the risk of an incorrect conclusion. Group Sequential Methods with Applications to Clinical Trials describes group sequential stopping rules designed to reduce average study length and control Type I and II error probabilities. The authors present one-sided and two-sided tests, introduce several families of group sequential tests, and explain how to choose the most appropriate test and interim analysis schedule. Their topics include placebo-controlled randomized trials, bio-equivalence testing, crossover and longitudinal studies, and linear and generalized linear models. Research in group sequential analysis has progressed rapidly over the past 20 years. Group Sequential Methods with Applications to Clinical Trials surveys and extends current methods for planning and conducting interim analyses. It provides straightforward descriptions of group sequential hypothesis tests in a form suited for direct application to a wide variety of clinical trials. Medical statisticians engaged in any investigations planned with interim analyses will find this book a useful and important tool.
This book reviews the current applications of molecular tools in cytopathology and provides a concise handbook for those who provide care in this era of personalized medicine. Specifically, the text provides a comprehensive and concise review of the emerging molecular tests available clinically in different subspecialities of diagnostic pathology. It reviews the current data of molecular testing already applied in cytopathology, discusses some of the biomarkers with potential utility in cytopathology in the near future and reviews the technical challenges in applying and validating molecular tools in liquid-based cytologic materials. Molecular Cytopathology will serve as a valuable resource for cytopathologists, cytotechnologists, pathology trainees, and clinicians with an interest in molecular applications in cytopathology.
As with other books in the Molecular Pathology Library Series, Molecular Pathology of Lung Cancer bridges the gap between the molecular specialist and the clinical practitioner, including the surgical pathologist who now has a key role in decisions regarding molecular targeted therapy for lung cancer. Molecular Pathology of Lung Cancer provides the latest information and current insights into the molecular basis for lung cancer, including precursor and preinvasive lesions, molecular diagnosis, molecular targeted therapy, molecular prognosis, molecular radiology and related fields for lung cancer generally and for the specific cell types. As many fundamental concepts about lung cancer have undergone revision in only the past few years, this book will likely be the first to comprehensively cover the new molecular pathology of lung cancer. It provides a foundation in this field for pathologists, medical oncologists, radiation oncologists, thoracic surgeons, thoracic radiologists and their trainees, physician assistants, and nursing staff.