Download Free Biology Of Milkfish Book in PDF and EPUB Free Download. You can read online Biology Of Milkfish and write the review.

Tropical Mariculture takes an in-depth look at developmental activities in a growing industry striving towards sustainability and environmental integrity. All of the contributors to this book have considerable experience and expertise in the field of tropical mariculture, and this is the first book to bring expert contributions together. The topics covered are wide and varied, ranging from general issues such as the impact of mariculture on coastal ecosystems to genetic improvement of cultured marine species, as well as the specifics of breeding selected marine species of current importance, such as groupers and sea bass. Significant coverage is also given to the problems of larval rearing in inland aquaculture as well as the demands of water- and land-based resources in a tropical environment. This book will be essential for everyone working in and researching tropical mariculture. - Looks at developmental activities in tropical mariculture - All of the contributors are experts in the field - Covers specific breeding problems and larval rearing - Studies the environmental impact of inland aquacultural activities - Provides detailed examples of cultivated species in the tropics - Compiles mariculture strategies and discusses example species - First book to give an overview of tropical mariculture
Referred to in the Bible, pictured on the wall-friezes of ancient Egyptian tombs, and a subject of fascination for generations of scientists, the tilapias (Cichlidae: Tilapiini) have featured in the diet and culture of humankind for thousands of years. The present century has seen their spread from Africa throughout the tropics and sub-tropics, largely for food and fisheries purposes. This book attempts to pull together our knowledge of this important group - their biology and fisheries and aquaculture - in a single volume, something that has not been done comprehensively for nearly two decades. A succession of chapters by acknowledged authorities covers evolution, phylogenetic relationships and biogeography, reproductive biology, mating systems and parental care, diet, feeding and digestive physiology, environmental physiology and energetics, the role of tilapias in ecosystems, population dynamics and management, genetics, seed production, nutrition, farming, economics and marketing. The book is aimed at biologists, fisheries scientists, aquaculturists, and all interested in aquatic ecology.
In most habitats, adaptations are the single most obvious aspects of an organism's phenotype. However, the most obvious feature of many subterranean animals are losses, not adaptations. Even Darwin saw subterranean animals as degenerates: examples of eyelessness and loss of structure in general. For him, the explanation was a straightforward Lamarc
There has been a continual expansion in aquaculture, such that total production is fast approaching that of wild-caught fisheries. Yet the expansion is marred by continued problems of disease. New pathogens emerge, and others become associated with new conditions. Some of these pathogens become well established, and develop into major killers of aquatic species. Diagnosis and Control of Diseases of Fish and Shellfish focuses on the diagnosis and control of diseases of fish and shellfish, notably those affecting aquaculture. Divided into 12 chapters, the book discusses the range of bacterial, viral and parasitic pathogens, their trends, emerging problems, and the relative significance to aquaculture. Developments in diagnostics and disease management, including the widespread use of serological and molecular methods, are presented. Application/dose and mode of action of prebiotics, probiotics and medicinal plant products used to control disease are examined, as well as the management and hygiene precautions that can be taken to prevent/control the spread of disease. This book will be a valuable resource for researchers, students, diagnosticians, veterinarians, fish pathologists and microbiologists concerned with the management of diseases of fish and shellfish.
Fish is crucial to food and nutrition security in Solomon Islands, and demand is expected to increase due to a growing population. However, it is projected that current capture fisheries production will not meet this growing demand. Aquaculture has the potential to mitigate the capture fishery shortfall, and the Government of Solomon Islands is prioritizing aquaculture as a solution to meet future food and income needs. Aquaculture in Solomon Islands is still in early development. Mozambique tilapia (Oreochromis mossambicus) is farmed for household consumption, but its prolific reproductive rate and resulting slow growth limit its potential as a commercial aquaculture species. More productive fish species that are not indigenous to Solomon Islands but are successfully farmed overseas could be introduced; however, such a decision needs to take into account the potential ecological or social impacts. For land-based pond aquaculture, the only indigenous species that has been farmed extensively elsewhere is milkfish (Chanos chanos). This report presents a feasibility assessment for milkfish farming in Solomon Islands. It synthesizes the current knowledge about milkfish farming and presents results of a 4-year study on the potential for milkfish aquaculture in Solomon Islands.
The objectives of this volume are to present an up-to-date (literature survey up to 2001) account of the biology of Artemia focusing particularly upon the major advances in knowledge and understanding achieved in the last fifteen or so years and emphasising the operational and functional linkage between the biological phenomena described and the ability of this unusual animal to thrive in extreme environments. Artemia is a genus of anostracan crustaceans, popularly known as brine shrimps. These animals are inhabitants of saline environments which are too extreme for the many species which readily predate them if opportunity offers. They are, thus, effectively inhabitants of extreme (hypersaline) habitats, but at the same time are able to tolerate physiologically large changes in salinity, ionic composition, temperature and oxygen tension. Brine shrimp are gener ally thought of as tropical and subtropical, but are also found in regions where temperatures are very low for substantial periods such as Tibet, Siberia and the Atacama desert. They have, thus, great powers of adaptation and are of interest for this capacity alone. The earliest scientific reference to brine shrimp is in 1756, when Schlosser reported their existence in the saltpans of Lymington, England. These saltpans no longer exist and brine shrimp are not found in Britain today. Later, Linnaeus named the brine shrimp Cancer salinus and later still, Leach used the name Artemia salina. The strong effect which the salinity of the medium exerts on the morphological development of Artemia is now widely recognised.