Download Free Biological And Genetic Basis Of Agronomical And Seed Quality Traits In Legumes Book in PDF and EPUB Free Download. You can read online Biological And Genetic Basis Of Agronomical And Seed Quality Traits In Legumes and write the review.

This book is a collection of updated studies related to current improvements in legume traits and their agricultural benefits. It discusses the physiological functions, genetics, and genomics of legume crops. Chapters address such topics as genetics and biological insights of seed traits in the context of climate change, improving quality and yields of legume seeds, new genetic resources from diverse germplasms, and agricultural benefits of legumes in agroecosystems.
Grain legumes mainly consisting of common bean, pea, chickpea, faba bean, cowpea, lentil, pigeon pea, peanut, Asian Vigna species, grass pea and horsegram are under cultivation in a considerable area worldwide. With their higher protein content and symbiotic nitrogen-fixing bacteria in root nodules enabling them to fix their own nitrogen, reducing the fertilizer use in agriculture has become very important for the production systems. For most of these important grain legumes, a large number of germplasm accessions were characterized and evaluated for various agro-morphological traits, including biotic, abiotic and quality parameters. Core and mini-core collections have also been developed for the majority of grain legumes; they were further evaluated for different parameters. From these genetic resources, potential donors of desirable traits have been selected after evaluation and characterization and have been utilized in the genetic improvement of cultivars. Current available genomic resources and technologies can facilitate allele mining for novel traits of interest and incorporation from wild relatives into elite domestic genetic backgrounds.
Food legumes are important constituents of the human diet and animal feed where they are crucial to a balanced diet, supplying high quality proteins. These crops also play an important role in low-input agricultural production systems by fixing atmospheric nitrogen. Despite systematic and continuous breeding efforts through conventional methods, substantial genetic gains have not been achieved. With the rise in demand for food legumes/pulses and increased market value of these crops, research has focused on increasing production and improving the quality of pulses for both edible and industria.
​​​This book is devoted to grain legumes and include eight chapters devoted to the breeding of specific grain legume crops and five general chapters dealing with important topics which are common to most of the species in focus. Soybean is not included in the book as it is commonly considered an oil crop more than a grain legume and is included in the Oil Crops Volume of the Handbook of Plant Breeding.​Legume species belong to the Fabaceae family and are characterized by their fruit, usually called pod. Several species of this family were domesticated by humans, such as soybean, common bean, faba bean, pea, chickpea, lentil, peanut, or cowpea. Some of these species are of great relevance as human and animal food. Food legumes are consumed either by their immature pod or their dry seeds, which have a high protein content. Globally, grain legumes are the most relevant source of plant protein, especially in many countries of Africa and Latin America, but there are some constraints in their production, such as a poor adaptation, pest and diseases and unstable yield. Current research trends in Legumes are focused on new methodologies involving genetic and omic studies, as well as new approaches to the genetic improvement of these species, including the relationships with their symbiotic rhizobia.
"The book...is, in fact, a short text on the many practical problems...associated with translating the explosion in basic biotechnological research into the next Green Revolution," explains Economic Botany. The book is "a concise and accurate narrative, that also manages to be interesting and personal...a splendid little book." Biotechnology states, "Because of the clarity with which it is written, this thin volume makes a major contribution to improving public understanding of genetic engineering's potential for enlarging the world's food supply...and can be profitably read by practically anyone interested in application of molecular biology to improvement of productivity in agriculture."
This anchor volume to the series Managing Global Genetic Resources examines the structure that underlies efforts to preserve genetic material, including the worldwide network of genetic collections; the role of biotechnology; and a host of issues that surround management and use. Among the topics explored are in situ versus ex situ conservation, management of very large collections of genetic material, problems of quarantine, the controversy over ownership or copyright of genetic material, and more.
Legumes have played an important part as human food and animal feed in cropping systems since the dawn of agriculture. The legume family is arguably one of the most abundantly domesticated crop plant families. Their ability to symbiotically fix nitrogen and improve soil fertility has been rewarded since antiquity and makes them a key protein source. Pea was the original model organism used in Mendel´s discovery of the laws of inheritance, making it the foundation of modern plant genetics. This book based on Special Issue provides up-to-date information on legume biology, genetic advances, and the legacy of Mendel.
Genetically engineered (GE) crops were first introduced commercially in the 1990s. After two decades of production, some groups and individuals remain critical of the technology based on their concerns about possible adverse effects on human health, the environment, and ethical considerations. At the same time, others are concerned that the technology is not reaching its potential to improve human health and the environment because of stringent regulations and reduced public funding to develop products offering more benefits to society. While the debate about these and other questions related to the genetic engineering techniques of the first 20 years goes on, emerging genetic-engineering technologies are adding new complexities to the conversation. Genetically Engineered Crops builds on previous related Academies reports published between 1987 and 2010 by undertaking a retrospective examination of the purported positive and adverse effects of GE crops and to anticipate what emerging genetic-engineering technologies hold for the future. This report indicates where there are uncertainties about the economic, agronomic, health, safety, or other impacts of GE crops and food, and makes recommendations to fill gaps in safety assessments, increase regulatory clarity, and improve innovations in and access to GE technology.