Download Free Biological And Bio Inspired Nanomaterials Book in PDF and EPUB Free Download. You can read online Biological And Bio Inspired Nanomaterials and write the review.

A comprehensive overview of nanomaterials that are inspired by or targeted at biology, including some of the latest breakthrough research. Throughout, valuable contributions from top-level scientists illustrate how bionanomaterials could lead to novel devices or structures with unique properties. The first and second part cover the most relevant synthetic and bioinspired nanomaterials, including surfaces with extreme wettability properties, functional materials with improved adhesion or structural and functional systems based on the complex and hierarchical organization of natural composites. These lessons from nature are explored in the last section where bioinspired materials are proposed for biomedical applications, showing their potential for future applications in drug delivery, theragnosis, and regenerative medicine. A navigational guide aimed at advanced and specialist readers, while equally relevant for readers in research, academia or private companies focused on high added-value contributions. Young researchers will also find this an indispensable guide in choosing or continuing to work in this stimulating area, which involves a wide range of disciplines, including chemistry, physics, materials science and engineering, biology, and medicine.
This book intends to provide an up-to-date information in the field of nanobiomedicine. The focus of the book is on the basic concepts and recent developments in the field of nanotechnology. This book covers a broad spectrum of nanomaterials processing, structural characteristics, and related properties and will include bio-probes, medical imaging, drug delivery, and tumor diagnosis. Critical issues are addressed in a straightforward manner so those with no technical background and university students can benefit from the information. Furthermore, many novel concepts in nanomaterials are explained in light of current theories. An important aspect of the book lies on its wide coverage in practical biomedical applications. Not only are the cutting-edge technologies in modern medicine introduced, but also unique materials applications in many clinical areas.
This book summarizes naturally occurring and designed bio-inspired molecular building blocks assembled into nanoscale structures. It covers a fascinating array of biomimetic and bioinspired materials, including inorganic nanozymes, structures formed by DNA origami, a wide range of peptide and protein-based nanomaterials, as well as their applications in diagnostics and therapeutics. The book elucidates the mechanism of assembly of these materials and characterisation of their mechanical and physico-chemical properties which inspires readers not only to exploit the potential applications of nanomaterials, but also to understand their potential risks and benefits. It will be of interest to a broad audience of students and researchers spanning the disciplines of biology, chemistry, engineering, materials science, and physics.
This expanded and updated edition of the 2007 version introduces readers from various backgrounds to the rapidly growing interface between biology and nanotechnology. It intellectually integrates concepts, applications, and outlooks from these major scientific fields and presents them to readers from diverse backgrounds in a comprehensive and didactic manner.Written by two leading nanobiologists actively involved at the forefront of the field both as researchers and educators, this book takes the reader from the fundamentals of nanobiology to the most advanced applications.The book fulfils a unique niche: to address not only students, but also scientists who are eager (and nowadays obliged) to learn about other state-of-the-art disciplines. The book is written in such a way as to be accessible to biologists, chemists, and physicists with no background in nanotechnology (for example biologists who are interested in inorganic nanostructures or physicists who would like to learn about biological assemblies and applications thereof). It is reader-friendly and will appeal to a wide audience not only in academia but also in the industry and anyone interested in learning more about nanobiotechnology.
Takes a materials science approach, correlating structure-property relationships with function across a broad range of biological materials.
Biological synthesis employing microorganisms, fungi or plants is an alternative method to produce nanoparticles in low-cost and eco-friendly ways. The book covers the synthesis of metal nanoparticles, metal oxide nanostructures and nanocomposite materials, as well as the stability and characterization of bioinspired nanomaterials. Applications include optical and electrochemical sensors, packaging, SERS and drug delivery processes. Keywords: Bioinspired Nanomaterials, Metal Nanoparticles, Metal Oxide Nanostructures, Nanocomposite Materials, Microbicidal Activity, Drug Delivery, Packaging Applications, SERS Applications, Fluorescent Biosensing, Quantum Dots. Bio-Imaging, Electrochemical Sensors.
This book focuses on the use of bio-inspired and biomimetic methods for the fabrication and activation of nanomaterials. This includes studies concerning the binding of the biomolecules to the surface of inorganic structures, structure/function relationships of the final materials and extensive discussions on the final applications of such biomimetic materials in unique applications including energy harvesting/storage, biomedical diagnostics and materials assembly.
Written by authors from different fields to reflect the interdisciplinary nature of the topic, this book guides the reader through new nano-materials processing inspired by nature. Structured around general principles, each selection and explanation is motivated by particular biological case studies. This provides the background for elucidating the particular principle in a second section. In the third part, examples for applying the principle to materials processing are given, while in a fourth subsection each chapter is supplemented by a selection of relevant experimental and theoretical techniques.
This book covers emerging bioinspired green methods for preparing inorganic nanomaterials. The book starts with an introduction to the principles of green chemistry and engineering, and highlights the special properties that nanomaterials possess, their applications and ways to characterise them. It describes conventional methods of synthesising and manufacturing inorganic nanomaterials, and introduces biological and biomimetic/bioinspired synthetic methods as a solution to precisely control nanomaterials and design sustainable manufacturing routes. The book elaborates on various mechanisms and examples of green nanomaterials, including the role of organic matrix and natural self-assembly, and advantages and opportunities with green nanomaterials. Two case studies of magnetic and silica materials are provided for advanced readers. The book is an insightful reference text for researchers focusing on synthetic biology and nanomaterials. It is an essential title for postgraduates and final-year undergraduates studying advanced materials, sustainable engineering or environmental chemistry.
Nanobiomaterials: Nanostructured materials for biomedical applications covers an extensive range of topics related to the processing, characterization, modeling, and biomedical applications of nanostructured ceramics, polymers, metals, composites, self-assembled materials, and macromolecules. Novel approaches for bottom-up and top-down processing of nanostructured biomaterials are highlighted. In addition, innovative techniques for characterizing the in vitro behavior and in vivo behavior of nanostructured biomaterials are considered. Applications of nanostructured biomaterials in dentistry, drug delivery, medical diagnostics, surgery and tissue engineering are examined. - Provides a concise description of the materials and technologies used in the development of nanostructured biomaterials - Provides industrial researchers with an up-to-date and handy reference on current topics in the field of nanostructured biomaterials - Includes an integrated approach that is used to discuss both the biological and engineering aspects of nanostructured biomaterials