Download Free Bioinspired Surface Modification For Antifouling And Antibacterial Applications Book in PDF and EPUB Free Download. You can read online Bioinspired Surface Modification For Antifouling And Antibacterial Applications and write the review.

Superhydrophobic Surfaces analyzes the fundamental concepts of superhydrophobicity and gives insight into the design of superhydrophobic surfaces. The book serves as a reference for the manufacturing of materials with superior water-repellency, self-cleaning, anti-icing and corrosion resistance. It thoroughly discusses many types of hydrophobic surfaces such as natural superhydrophobic surfaces, superhydrophobic polymers, metallic superhydrophobic surfaces, biological interfaces, and advanced/hybrid superhydrophobic surfaces. - Provides an adequate blend of complex engineering concepts with in-depth explanations of biological principles guiding the advancement of these technologies - Describes complex ideas in simple scientific language, avoiding overcomplicated equations and discipline-specific jargon - Includes practical information for manufacturing superhydrophobic surfaces - Written by experts with complementary skills and diverse scientific backgrounds in engineering, microbiology and surface sciences
Biosynthetic Polymers for Medical Applications provides the latest information on biopolymers, the polymers that have been produced from living organisms and are biodegradable in nature. These advanced materials are becoming increasingly important for medical applications due to their favorable properties, such as degradability and biocompatibility. This important book provides readers with a thorough review of the fundamentals of biosynthetic polymers and their applications. Part One covers the fundamentals of biosynthetic polymers for medical applications, while Part Two explores biosynthetic polymer coatings and surface modification. Subsequent sections discuss biosynthetic polymers for tissue engineering applications and how to conduct polymers for medical applications. - Comprehensively covers all major medical applications of biosynthetic polymers - Provides an overview of non-degradable and biodegradable biosynthetic polymers and their medical uses - Presents a specific focus on coatings and surface modifications, biosynthetic hydrogels, particulate systems for gene and drug delivery, and conjugated conducting polymers
Biomimetic and bioinspired membranes are the most promising type of membrane for multiple usage scenarios, including commercial separation applications as well as water and wastewater treatment technologies. In recent years, aquaporin biomimetic membranes (ABMs) for water purification have raised considerable interest. These membranes display uniquely favorable properties and outstanding performances, such as diverse interactions, varied selective transport mechanisms, superior stability, high resistance to membrane fouling, and distinct adaptability. Biomimetic membranes would make a significant contribution to alleviate water stress, environmental threats, and energy consumption.
Bioinspired Materials for Medical Applications examines the inspiration of natural materials and their interpretation as modern biomaterials. With a strong focus on therapeutic and diagnostic applications, the book also examines the development and manipulation of bioinspired materials in regenerative medicine. The first set of chapters is heavily focused on bioinspired solutions for the delivery of drugs and therapeutics that also offer information on the fundamentals of these materials. Chapters in part two concentrate on bioinspired materials for diagnosis applications with a wide coverage of sensor and imaging systems With a broad coverage of the applications of bioinspired biomaterials, this book is a valuable resource for biomaterials researchers, clinicians, and scientists in academia and industry, and all those who wish to broaden their knowledge in the allied field. - Explores how materials designed and produced with inspiration from nature can be used to enhance man-made biomaterials and medical devices - Brings together the two fields of biomaterials and bioinspired materials - Written by a world-class team of research scientists, engineers, and clinicians
Antibiofouling Membranes for Water and Wastewater Treatment: Principles and Applications covers most recent advances, challenges, and industrial applications of antibiofouling membranes to help in reducing cost and increasing sustainability of long term-filtration performance of membranes in water and wastewater treatment. This book will provide a compact source of relevant and timely information on antibiofouling membranes and will be of great interest to scientists, engineers, industry R&D personnel, and graduate students engaged in the development, engineering scale-up, and applications of antibiofouling membranes, as well as other readers who are interested in microfiltration, membrane bioreactor, ultrafiltration, nanofiltration, reverse osmosis, and related topics. - Covers scientific and engineering principles of antibiofouling membranes for water and wastewater treatment - Unravels the structure-preparation-property-application relationship of antibiofouling membranes - Provides advanced design strategies of antibiofouling membrane materials - Summarizes and critically discusses antibiofouling membrane materials based on biocidal nanomaterials and quaternary ammonium compounds - Focuses on the state-of-the-art applications of antibiofouling membranes for water and wastewater treatment
This book reviews the development of antifouling surfaces and materials for both land and marine environments, with an emphasis on marine anti biofouling. It explains the differences and intrinsic relationship between antifouling in land and marine environments, which are based on superhydrophobicity and superhydrophilicity respectively. It covers various topics including biomimetic antifouling and self-cleaning surfaces, grafted polymer brushes and micro/nanostructure surfaces with antifouling properties, as well as marine anti biofouling. Marine anti biofouling includes both historical biocidal compounds (tributyltin, copper and zinc) and current green, non-toxic antifouling strategies. This book is intended for those readers who are interested in grasping the fundamentals and applications of antifouling. Feng Zhou is a professor at the State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences.
Polymer Engineering focuses on the preparation and application of polymers in several hot topics such as artificial photosynthesis, water purification by membrane technologies, and biodiesel production from wastewater plants. The authors not only describe the latest developments in polymer science, but also support these experimental results by computational chemistry and modelling studies.
A comprehensive overview of nanomaterials that are inspired by or targeted at biology, including some of the latest breakthrough research. Throughout, valuable contributions from top-level scientists illustrate how bionanomaterials could lead to novel devices or structures with unique properties. The first and second part cover the most relevant synthetic and bioinspired nanomaterials, including surfaces with extreme wettability properties, functional materials with improved adhesion or structural and functional systems based on the complex and hierarchical organization of natural composites. These lessons from nature are explored in the last section where bioinspired materials are proposed for biomedical applications, showing their potential for future applications in drug delivery, theragnosis, and regenerative medicine. A navigational guide aimed at advanced and specialist readers, while equally relevant for readers in research, academia or private companies focused on high added-value contributions. Young researchers will also find this an indispensable guide in choosing or continuing to work in this stimulating area, which involves a wide range of disciplines, including chemistry, physics, materials science and engineering, biology, and medicine.
Smart materials have been produced by conceiving of the idea of materials/systems having a fourth dimension. To match advances in instrumentation, efforts are being made to develop materials, resulting in smart materials with enhanced performance. In nature, the action of stimuli-responsive materials is reversible; this idea has attracted interest for its potential research and industrial applications. The challenge remains how to couple these applications with environmental consciousness. This book presents the basics of smart polymers and describes their current and future applications. This book is different from other books on the subject in that it explores polymer materials’ smart behavior in more depth, covering vibration damping, thermal and electrochemical energy, sensing at trace level, biotechnology, and so on. The 14 chapters in this book cover diverse areas, including: • Photoresponsive polymers that can be manipulated using a specific frequency of light • Designing polymers for vibration damping • Smart manipulations of hydrophobic and super-hydrophobic polymers • Biopolymers, including hydrogels for smart application, drug delivery, and other uses • Smart paints • Self-healing and shape memory polymers • Holography for data storage • Phase change polymers and solid polymer electrolytes for thermal and electrochemical energy • Molecular imprinting polymers for sub-ppm sensing and removal of unwanted materials • Smart textiles, and the concept of advanced textiles This book will be of particular interest to researchers, postgraduates, and industry experts. It offers an extensive introduction to the basics of smart polymers and their possible applications.