Download Free Bioinspired Nanomaterials For Energy And Environmental Applications Book in PDF and EPUB Free Download. You can read online Bioinspired Nanomaterials For Energy And Environmental Applications and write the review.

The book presents recent advances in the synthesis of bioinspired nanomaterials and their applications in areas such as photocatalysis, electrocatalysis and photoelectrocatalysis, supercapacitors and solar cells. Specific topics include photocatalytic disinfection, degradation of toxic chemicals, energy conversion and energy storage. Keywords: Bionanomaterials, Nanomaterial Synthesis, Green Synthesis, Metal Nanoparticles, Metal Oxide Nanostructures, Photocatalysis, Electrocatalysis, Photoelectrocatalysis, Energy-Related Electrocatalysis, Supercapacitors, Disinfection, Toxic Chemicals, Dye-Sensitized Solar Cells.
Biological synthesis employing microorganisms, fungi or plants is an alternative method to produce nanoparticles in low-cost and eco-friendly ways. The book covers the synthesis of metal nanoparticles, metal oxide nanostructures and nanocomposite materials, as well as the stability and characterization of bioinspired nanomaterials. Applications include optical and electrochemical sensors, packaging, SERS and drug delivery processes. Keywords: Bioinspired Nanomaterials, Metal Nanoparticles, Metal Oxide Nanostructures, Nanocomposite Materials, Microbicidal Activity, Drug Delivery, Packaging Applications, SERS Applications, Fluorescent Biosensing, Quantum Dots. Bio-Imaging, Electrochemical Sensors.
This book focuses on the use of bio-inspired and biomimetic methods for the fabrication and activation of nanomaterials. This includes studies concerning the binding of the biomolecules to the surface of inorganic structures, structure/function relationships of the final materials and extensive discussions on the final applications of such biomimetic materials in unique applications including energy harvesting/storage, biomedical diagnostics and materials assembly.
Providing up-to-date coverage of green nanomaterials and systems, this book provides comprehensive information on nanostructured materials, including their applications in energy and environmental sciences. The book focusses on photo-active nanostructured materials, from the basic understanding of solar energy activation to their sustainable preparation and applications in environmental remediation and fuel production from biomass and carbon dioxide. It also examines the health and environmental impacts of photo-catalyst nanomaterials. This book is an important reference for researchers and industrial chemists working in the fields of energy and environmental remediation.
There is a growing interest in applying the UN's sustainable development goals to a variety of sectors. One can use certain principles of green chemistry in the emerging fields of nanoscience and nanotechnology. The green chemistry approach focuses on the creation of nanodimensional materials that have a low environmental impact, are cost-effective, and have no negative consequences on the environment. This book aims to summarise the different alternative green chemical routes. Furthermore, the book describes the use of nano-dimensional materials for sustainable energy generation and environmental remediation applications.
This book covers emerging bioinspired green methods for preparing inorganic nanomaterials. The book starts with an introduction to the principles of green chemistry and engineering, and highlights the special properties that nanomaterials possess, their applications and ways to characterise them. It describes conventional methods of synthesising and manufacturing inorganic nanomaterials, and introduces biological and biomimetic/bioinspired synthetic methods as a solution to precisely control nanomaterials and design sustainable manufacturing routes. The book elaborates on various mechanisms and examples of green nanomaterials, including the role of organic matrix and natural self-assembly, and advantages and opportunities with green nanomaterials. Two case studies of magnetic and silica materials are provided for advanced readers. The book is an insightful reference text for researchers focusing on synthetic biology and nanomaterials. It is an essential title for postgraduates and final-year undergraduates studying advanced materials, sustainable engineering or environmental chemistry.
This book intends to provide an up-to-date information in the field of nanobiomedicine. The focus of the book is on the basic concepts and recent developments in the field of nanotechnology. This book covers a broad spectrum of nanomaterials processing, structural characteristics, and related properties and will include bio-probes, medical imaging, drug delivery, and tumor diagnosis. Critical issues are addressed in a straightforward manner so those with no technical background and university students can benefit from the information. Furthermore, many novel concepts in nanomaterials are explained in light of current theories. An important aspect of the book lies on its wide coverage in practical biomedical applications. Not only are the cutting-edge technologies in modern medicine introduced, but also unique materials applications in many clinical areas.
Bionanomaterials are molecular materials composed partially or completely of biological molecules, key biological structures, such as proteins, enzymes, viruses, DNA, biopolymers as well as metal, metal oxides, and carbon nanomaterials with characteristic bioactivity. Bionanomaterials have drawn much attention for their use in a wide range of industrial applications from scaffolds, dental implants, drug delivery, dialysis, biobatteries, biofuel cells, air purification, and water treatment. Therefore, the intensive current research in this area is driven towards the designing and functionalization of bionanomaterials for industrial applications. Fundamentals of Bionanomaterials covers the fundamental aspects, experimental setup, synthesis, properties, and characterization of the different types of bionanomaterial. It discusses the different structure and unique properties of bionanomaterials that can be obtained by modifying their morphology and composition, highlighting a wide range of fabrication techniques of bionanomaterials and critical processing parameters. This is an important reference source for all those seeking to gain a solid understanding of the characterization, properties and processing a variety of bionanomaterial classes. - Explains the major properties and characterization techniques for a range of bionanomaterial classes - Discusses the commercialization of different types of bionanomaterials for a variety of industry sectors - Highlights the challenges and interdisciplinary perspective of bionanomaterials in science, biology, engineering, medicine, and technology, incorporating both fundamentals and applications
Biopolymeric Nanomaterials: Fundamentals and Applications outlines the fundamental design concepts and emerging applications of biopolymeric nanomaterials. The book also provides information on emerging applications of biopolymeric nanomaterials, including in biomedicine, manufacturing and water purification, as well as assessing their physical, chemical and biological properties. This is an important reference source for materials scientists, engineers and biomedical scientists who are seeking to increase their understanding of how polymeric nanomaterials are being used for a range of biomedical and industrial applications. Biopolymeric nanomaterials refer to biocompatible nanomaterials, consisting of biopolymers, such as protein (silk, collagen, gelatin, ß-casein, zein, and albumin), protein-mimicked polypeptides and polysaccharides (chitosan, alginate, pullulan, starch, and heparin). Biopolymeric nanomaterials may be used as i) delivery systems for bioactive compounds in food application, (ii) for delivery of therapeutic molecules (drugs and genes), or for (iii) tissue engineering. Provides information on the design concepts and synthesis of biopolymeric nanomaterials in biomedical and industrial applications Highlights the major properties and processing methods for biopolymeric nanomaterials Assesses the major challenges of producing biopolymeric nanomaterials on an industrial scale
The demand for secure, affordable and clean energy is a priority call to humanity. Challenges associated with conventional energy resources, such as depletion of fossil fuels, high costs and associated greenhouse gas emissions, have stimulated interests in renewable energy resources. For instance, there have been clear gaps and rushed thoughts about replacing fossil-fuel driven engines with electric vehicles without long-term plans for energy security and recycling approaches. This book aims to provide a clear vision to scientists, industrialists and policy makers on renewable energy resources, predicted challenges and emerging applications. It can be used to help produce new technologies for sustainable, connected and harvested energy. A clear response to economic growth and clean environment demands is also illustrated.