Download Free Bioinorganic Medicinal Chemistry Book in PDF and EPUB Free Download. You can read online Bioinorganic Medicinal Chemistry and write the review.

This book gives a comprehensive overview about medicinal inorganic chemistry. Topics like targeting strategies, mechanism of action, Pt-based antitumor drugs, radiopharmaceuticals are covered in detail and offer the reader an in-depth overview about this important topic.
Bioinorganic Chemistry of Copper focuses on the vital role of copper ions in biology, especially as an essential metalloenzyme cofactor. The book is highly interdisciplinary in its approach--the outstanding list of contributors includes coordination chemists, biochemists, biophysicists, and molecular biologists. Chapters are grouped into major areas of research interest in inorganic copper chemistry, spectroscopy, oxygen chemistry, biochemistry, and molecular biology. The book also discusses basic research of great potential importance to pharmaceutical scientists. This book is based on the first Johns Hopkins University Copper Symposium, held in August 1992. Researchers in chemistry, biochemistry, molecular biology, and medicinal chemistry will find it to be an essential reference on its subject.
This book serves to fill an important niche, bridging bioinorganic and medicinal chemistry and will be an invaluable asset for many in the discipline.
Bioinorganic Chemistry provides a broad overview of this dynamic field, reviewing the key chemical elements that have important biological function, and exploring how the chemistry of these elements is central to the function of biological systems.
Part A.: Overviews of biological inorganic chemistry : 1. Bioinorganic chemistry and the biogeochemical cycles -- 2. Metal ions and proteins: binding, stability, and folding -- 3. Special cofactors and metal clusters -- 4. Transport and storage of metal ions in biology -- 5. Biominerals and biomineralization -- 6. Metals in medicine. -- Part B.: Metal ion containing biological systems : 1. Metal ion transport and storage -- 2. Hydrolytic chemistry -- 3. Electron transfer, respiration, and photosynthesis -- 4. Oxygen metabolism -- 5. Hydrogen, carbon, and sulfur metabolism -- 6. Metalloenzymes with radical intermediates -- 7. Metal ion receptors and signaling. -- Cell biology, biochemistry, and evolution: Tutorial I. -- Fundamentals of coordination chemistry: Tutorial II.
Increasing the potency of therapeutic compounds, while limiting side-effects, is a common goal in medicinal chemistry. Ligands that effectively bind metal ions and also include specific features to enhance targeting, reporting, and overall efficacy are driving innovation in areas of disease diagnosis and therapy. Ligand Design in Medicinal Inorganic Chemistry presents the state-of-the-art in ligand design for medicinal inorganic chemistry applications. Each individual chapter describes and explores the application of compounds that either target a disease site, or are activated by a disease-specific biological process. Ligand design is discussed in the following areas: Platinum, Ruthenium, and Gold-containing anticancer agents Emissive metal-based optical probes Metal-based antimalarial agents Metal overload disorders Modulation of metal-protein interactions in neurodegenerative diseases Photoactivatable metal complexes and their use in biology and medicine Radiodiagnostic agents and Magnetic Resonance Imaging (MRI) agents Carbohydrate-containing ligands and Schiff-base ligands in Medicinal Inorganic Chemistry Metalloprotein inhibitors Ligand Design in Medicinal Inorganic Chemistry provides graduate students, industrial chemists and academic researchers with a launching pad for new research in medicinal chemistry.
The importance of metals in biology, the environment and medicine has become increasingly evident over the last twenty five years. The study of the multiple roles of metal ions in biological systems, the rapidly expanding interface between inorganic chemistry and biology constitutes the subject called Biological Inorganic Chemistry. The present text, written by a biochemist, with a long career experience in the field (particularly iron and copper) presents an introduction to this exciting and dynamic field. The book begins with introductory chapters, which together constitute an overview of the concepts, both chemical and biological, which are required to equip the reader for the detailed analysis which follows. Pathways of metal assimilation, storage and transport, as well as metal homeostasis are dealt with next. Thereafter, individual chapters discuss the roles of sodium and potassium, magnesium, calcium, zinc, iron, copper, nickel and cobalt, manganese, and finally molybdenum, vanadium, tungsten and chromium. The final three chapters provide a tantalising view of the roles of metals in brain function, biomineralization and a brief illustration of their importance in both medicine and the environment.Relaxed and agreeable writing style. The reader will not only fiind the book easy to read, the fascinating anecdotes and footnotes will give him pegs to hang important ideas on.Written by a biochemist. Will enable the reader to more readily grasp the biological and clinical relevance of the subject.Many colour illustrations. Enables easier visualization of molecular mechanismsWritten by a single author. Ensures homgeneity of style and effective cross referencing between chapters
A comprehensive introduction to inorganic chemistry and, specifically, the science of metal-based drugs, Essentials of Inorganic Chemistry describes the basics of inorganic chemistry, including organometallic chemistry and radiochemistry, from a pharmaceutical perspective. Written for students of pharmacy and pharmacology, pharmaceutical sciences, medicinal chemistry and other health-care related subjects, this accessible text introduces chemical principles with relevant pharmaceutical examples rather than as stand-alone concepts, allowing students to see the relevance of this subject for their future professions. It includes exercises and case studies.
The field of Bioinorganic Chemistry has grown significantly in recent years; now one of the major sub-disciplines of Inorganic Chemistry, it has also pervaded other areas of the life sciences due to its highly interdisciplinary nature. Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, Second Edition provides a detailed introduction to the role of inorganic elements in biology, taking a systematic element-by-element approach to the topic. The second edition of this classic text has been fully revised and updated to include new structure information, emerging developments in the field, and an increased focus on medical applications of inorganic compounds. New topics have been added including materials aspects of bioinorganic chemistry, elemental cycles, bioorganometallic chemistry, medical imaging and therapeutic advances. Topics covered include: Metals at the center of photosynthesis Uptake, transport, and storage of essential elements Catalysis through hemoproteins Biological functions of molybdenum, tungsten, vanadium and chromium Function and transport of alkaline and alkaline earth metal cations Biomineralization Biological functions of the non-metallic inorganic elements Bioinorganic chemistry of toxic metals Biochemical behavior of radionuclides and medical imaging using inorganic compounds Chemotherapy involving non-essential elements This full color text provides a concise and comprehensive review of bioinorganic chemistry for advanced students of chemistry, biochemistry, biology, medicine and environmental science.
This book is organized into 12 important chapters that focus on the progress made by metal-based drugs as anticancer, antibacterial, antiviral, anti-inflammatory, and anti-neurodegenerative agents, as well as highlights the application areas of newly discovered metallodrugs. It can prove beneficial for researchers, investigators and scientists whose work involves inorganic and coordination chemistry, medical science, pharmacy, biotechnology and biomedical engineering.