Download Free Biohydrogen Iii Book in PDF and EPUB Free Download. You can read online Biohydrogen Iii and write the review.

Hydrogen is an almost ideal fuel and its wider use will result in an improvement in the environment due to factors including decreased air pollution. Hydrogen is the element of greatest abundance in the universe; however, its production from renewable resources remains a major challenge. The papers presented within this volume enhance and expand upon presentations made at the "Workshop on Biohydrogen 2002". Biohydrogen III evaluates the current status of Biohydrogen research worldwide and consider future research directions. - Important research on new fuel opportunities - 15 contributions from the world's leading experts
Bioenergy Systems for the Future: Prospects for Biofuels and Biohydrogen examines the current advances in biomass conversion technologies for biofuels and biohydrogen production, including their advantages and challenges for real-world application and industrial-scale implementation. In its first part, the book explores the use of lignocellulosic biomass and agricultural wastes as feedstock, also addressing biomass conversion into biofuels, such as bioethanol, biodiesel, bio-methane, and bio-gasoline. The chapters in Part II cover several different pathways for hydrogen production, from biomass, including bioethanol and bio-methane reforming and syngas conversion. They also include a comparison between the most recent conversion technologies and conventional approaches for hydrogen production. Part III presents the status of advanced bioenergy technologies, such as applications of nanotechnology and the use of bio-alcohol in low-temperature fuel cells. The role of advanced bioenergy in a future bioeconomy and the integration of these technologies into existing systems are also discussed, providing a comprehensive, application-oriented overview that is ideal for engineering professionals, researchers, and graduate students involved in bioenergy. - Explores the most recent technologies for advanced liquid and gaseous biofuels production, along with their advantages and challenges - Presents real-life application of conversion technologies and their integration in existing systems - Includes the most promising pathways for sustainable hydrogen production for energy applications
Hydrogen is an almost ideal fuel and its wider use will result in an improvement in the environment due to factors including decreased air pollution. Hydrogen is the element of greatest abundance in the universe; however, its production from renewable resources remains a major challenge. The papers presented within this volume enhance and expand upon presentations made at the "Workshop on Biohydrogen 99", Tsukuba, Japan. The contents evaluate the current status of Biohydrogen research worldwide and consider future research directions.Contributions from leading international experts cover the breadth of Biohydrogen R and D, from production to genetic engineering and molecular biology. This volume is designed to be an invaluable resource for researchers and other professionals who wish to obtain an overview of Biohydrogen R and D.
This book comprehensively introduces fundamentals and applications of fermentative hydrogen production from organic wastes, consisting of eight chapters, covering the microbiology, biochemistry and enzymology of hydrogen production, the enrichment of hydrogen-producing microorganisms, the pretreatment of various organic wastes for hydrogen production, the influence of different physicochemical factors on hydrogen production, the kinetic models and simulation of biological process of fermentative hydrogen production, the optimization of biological hydrogen production process and the fermentative hydrogen production from sewage sludge. The book summarizes the most recent advances that have been made in this field and discusses bottlenecks of further development. This book gives a holistic picture of this technology and details the knowledge through illustrative diagrams, flow charts, and comprehensive tables. It is intended for undergraduate and graduate students who are interested in bioenergy and wastes management, researchers exploring microbial fermentation process, and engineers working on system optimization or other bioenergy applications.
Authored by 50 top academic, government and industry researchers, this handbook explores mature, evolving technologies for a clean, economically viable alternative to non-renewable energy. In so doing, it also discusses such broader topics as the environmental impact, education, safety and regulatory developments. The text is all-encompassing, covering a wide range that includes hydrogen as an energy carrier, hydrogen for storage of renewable energy, and incorporating hydrogen technologies into existing technologies.
Increase in green, renewable and sustainable energy demand due to higher environmental impacts (e.g. Greenhouse gases emissions, climate change, etc.) on consumption of fossil fuel resource put down an extra pressure on government, researchers and industrialists. Among several available biofuel options, biohydrogen is considered as one of the best environmentally clean fuel and a strong candidate to fulfil the future demand of sustainable energy resource. Although, biohydrogen production technology and its use as a fuel is still in infancy stage. Selection of most sustainable production pathway, increase in production upto industrial scale and cost efficiency are some issue still persist with the biohydrogen research. “Biohydrogen Production: Sustainability of Current Technology and Future Perspective” is giving an insight for the sustainable production of biohydrogen at industrial scale. The process of biohydrogen production is complex and to opt the best suited production system for industrial scale is a frantic task. This book will provide an in depth information on all available technologies for biohydrogen production and feedstock options to choose upon. This book is also providing information on present status of the research in the field and possibility to change future fuel economy in to biohydrogen economy. Experts views provided in the chapters by renowned researchers from all over the globe in the field of biohydrogen research made this book a cornucopia of present research and future perspective of biohydrogen. This book is targeted at the researchers working on biohydrogen as well as the bioenergy scientist planning to move towards biohydrogen research. This book will provide a platform for motivation of researchers and industrialists for innovative ideas and thoughts to bring biohydrogen production at industrial scale.
Second and Third Generation of Feedstocks: The Evolution of Biofuels presents a critical analysis of both the applications and potential of bioenergy production from second and third generation feedstocks. The book illustrates different aspects of the processes used for the production of biofuels, dealing specifically with second and third generation feedstocks from biomass and algae. The pretreatment of feedstocks and optimization of various forms of bioenergy are considered, along with the economic aspects of the various processes. In the last few years, industrial research efforts have focused on low cost, large-scale processing for lignocellulosic feedstocks originating from agricultural residues and municipal wastes for bioenergy production. This book shares an insight into the recent developments taking place in this industry, exploring transformation processes as well as biomass and algae conversions. - Reviews existing lignocellulosic biomass feedstocks and their sources - Includes processes for the conversion of various feedstocks to biofuels - Discusses current research findings on second and third generation feedstocks - Describes processes involved in the transformation of algal biomass into biofuels
Given the backdrop of intense interest and widespread discussion on the prospects of a hydrogen energy economy, this book aims to provide an authoritative and up-to-date scientific account of hydrogen generation using solar energy and renewable sources such as water. While the technological and economic aspects of solar hydrogen generation are evolving, the scientific principles underlying various solar-assisted water splitting schemes already have a firm footing. This book aims to expose a broad-based audience to these principles. This book spans the disciplines of solar energy conversion, electrochemistry, photochemistry, photoelectrochemistry, materials chemistry, device physics/engineering, and biology.
"Energy is vital to global prosperity, yet dependence on fossil fuels as our primary energy source contributes to global climate change, environmental degradation, and health problems1. J.O.'.M. Bockris, The origin of ideas on a hydrogen economy and its so"
This second volume of Energy Resources and Systems is focused on renewable energy resources. Renewable energy mainly comes from wind, solar, hydropower, geothermal, ocean, bioenergy, ethanol and hydrogen. Each of these energy resources is important and growing. For example, high-head hydroelectric energy is a well established energy resource and already contributes about 20% of the world’s electricity. Some countries have significant high-head resources and produce the bulk of their electrical power by this method. However, the bulk of the world’s high-head hydroelectric resources have not been exploited, particularly by the underdeveloped countries. Low-head hydroelectric is unexploited and has the potential to be a growth area. Wind energy is the fastest growing of the renewable energy resources for the electricity generation. Solar energy is a popular renewable energy resource. Geothermal energy is viable near volcanic areas. Bioenergy and ethanol have grown in recent years primarily due to changes in public policy meant to encourage its usage. Energy policies stimulated the growth of ethanol, for example, with the unintended side effect of rise in food prices. Hydrogen has been pushed as a transportation fuel. The authors want to provide a comprehensive series of texts on the interlinking of the nature of energy resources, the systems that utilize them, the environmental effects, the socioeconomic impact, the political aspects and governing policies. Volume 1 on Fundamentals and Non Renewable Resources was published in 2009. It blends fundamental concepts with an understanding of the non-renewable resources that dominate today’s society. The authors are now working on Volume 3, on nuclear advanced energy resources and nuclear batteries, consists of fusion, space power systems, nuclear energy conversion, nuclear batteries and advanced power, fuel cells and energy storage. Volume 4 will cover environmental effects, remediation and policy. Solutions to providing long term, stable and economical energy is a complex problem, which links social, economical, technical and environmental issues. It is the goal of the four volume Energy Resources and Systems series to tell the whole story and provide the background required by students of energy to understand the complex nature of the problem and the importance of linking social, economical, technical and environmental issues.