Download Free Biofunctionalization Of Polymers And Their Applications Book in PDF and EPUB Free Download. You can read online Biofunctionalization Of Polymers And Their Applications and write the review.

Chitin, Chitosan and Derivatives for Wound Healing and Tissue Engineering, by Antonio Francesko and Tzanko Tzanov Polyhydroxyalkanoates (PHA) and their Applications, by Guo-Qiang Chen.- Enzymatic Polymer Functionalisation: Advances in Laccase and Peroxidase Derived Lignocellulose Functional Polymers, by Gibson S. Nyanhongo, Tukayi Kudanga, Endry Nugroho Prasetyo and Georg M. Guebitz.- Lipases in Polymer Chemistry, by Bahar Yeniad, Hemantkumar Naik and Andreas Heise.- Enzymes for the Biofunctionalization of Poly(Ethylene Terephthalate), by Wolfgang Zimmermann and Susan Billig.- Biology of Human Hair: Know Your Hair to Control It, by Rita Araújo, Margarida Fernandes, Artur Cavaco-Paulo and Andreia Gomes.- Recombinamers: Combining Molecular Complexity with Diverse Bioactivities for Advanced Biomedical and Biotechnological Applications, by José Carlos Rodríguez-Cabello, María Pierna, Alicia Fernández-Colino, Carmen García-Arévalo and Francisco Javier Arias.- Biomimetic Materials for Medical Application Through Enzymatic Modification, by Piergiorgio Gentile, Valeria Chiono, Chiara Tonda-Turo, Susanna Sartori and Gianluca Ciardelli.- Supramolecular Polymers Based on Cyclodextrins for Drug and Gene Carrier Delivery, by Jia Jing Li, Feng Zhao and Jun Li.- Engineering Liposomes and Nanoparticles for Biological Targeting, by Rasmus I. Jølck, Lise N. Feldborg, Simon Andersen, S. Moein Moghimi and Thomas L. Andresen.-
Chitin, Chitosan and Derivatives for Wound Healing and Tissue Engineering, by Antonio Francesko and Tzanko Tzanov Polyhydroxyalkanoates (PHA) and their Applications, by Guo-Qiang Chen.- Enzymatic Polymer Functionalisation: Advances in Laccase and Peroxidase Derived Lignocellulose Functional Polymers, by Gibson S. Nyanhongo, Tukayi Kudanga, Endry Nugroho Prasetyo and Georg M. Guebitz.- Lipases in Polymer Chemistry, by Bahar Yeniad, Hemantkumar Naik and Andreas Heise.- Enzymes for the Biofunctionalization of Poly(Ethylene Terephthalate), by Wolfgang Zimmermann and Susan Billig.- Biology of Human Hair: Know Your Hair to Control It, by Rita Araújo, Margarida Fernandes, Artur Cavaco-Paulo and Andreia Gomes.- Recombinamers: Combining Molecular Complexity with Diverse Bioactivities for Advanced Biomedical and Biotechnological Applications, by José Carlos Rodríguez-Cabello, María Pierna, Alicia Fernández-Colino, Carmen García-Arévalo and Francisco Javier Arias.- Biomimetic Materials for Medical Application Through Enzymatic Modification, by Piergiorgio Gentile, Valeria Chiono, Chiara Tonda-Turo, Susanna Sartori and Gianluca Ciardelli.- Supramolecular Polymers Based on Cyclodextrins for Drug and Gene Carrier Delivery, by Jia Jing Li, Feng Zhao and Jun Li.- Engineering Liposomes and Nanoparticles for Biological Targeting, by Rasmus I. Jølck, Lise N. Feldborg, Simon Andersen, S. Moein Moghimi and Thomas L. Andresen.-
Handbook of Bioplastics and Biocomposites Engineering Applications The 2nd edition of this successful Handbook explores the extensive and growing applications made with bioplastics and biocomposites for the packaging, automotive, biomedical, and construction industries. Bioplastics are materials that are being researched as a possible replacement for petroleum-based traditional plastics to make them more environmentally friendly. They are made from renewable resources and may be naturally recycled through biological processes, conserving natural resources and reducing CO2 emissions. The 30 chapters in the Handbook of Bioplastics and Biocomposites Engineering Applications discuss a wide range of technologies and classifications concerned with bioplastics and biocomposites with their applications in various paradigms including the engineering segment. Chapters cover the biobased materials; recycling of bioplastics; biocomposites modeling; various biomedical and engineering-based applications including optical devices, smart materials, cosmetics, drug delivery, clinical, electrochemical, industrial, flame retardant, sports, packaging, disposables, and biomass. The different approaches to sustainability are also treated. Audience The Handbook will be of central interest to engineers, scientists, and researchers who are working in the fields of bioplastics, biocomposites, biomaterials for biomedical engineering, biochemistry, and materials science. The book will also be of great importance to engineers in many industries including automotive, biomedical, construction, and food packaging.
Most of the advancements in communication, computers, medicine, and air and water purity are linked to macromolecules and a fundamental understanding of the principles that govern their behavior. These fundamentals are explored in Carraher's Polymer Chemistry, Ninth Edition. Continuing the tradition of previous volumes, the latest edition provides a well-rounded presentation of the principles and applications of polymers. With an emphasis on the environment and green chemistry and materials, this edition offers detailed coverage of natural and synthetic giant molecules, inorganic and organic polymers, biomacromolecules, elastomers, adhesives, coatings, fibers, plastics, blends, caulks, composites, and ceramics. Using simple fundamentals, this book demonstrates how the basic principles of one polymer group can be applied to all of the other groups. It covers reactivities, synthesis and polymerization reactions, techniques for characterization and analysis, energy absorption and thermal conductivity, physical and optical properties, and practical applications. This edition includes updated techniques, new sections on a number of copolymers, expanded emphasis on nanotechnology and nanomaterials, and increased coverage of topics including carbon nanotubes, tapes and glues, photochemistry, and more. With topics presented so students can understand polymer science even if certain parts of the text are skipped, this book is suitable as an undergraduate as well as an introductory graduate-level text. The author begins most chapters with theory followed by application, and generally addresses the most critical topics first. He provides all of the elements of an introductory text, covering synthesis, properties, applications, and characterization. This user-friendly book also contains definitions, learning objectives, questions, and additional reading in each chapter.
Carraher's Polymer Chemistry, Tenth Edition integrates the core areas of polymer science. Along with updating of each chapter, newly added content reflects the growing applications in Biochemistry, Biomaterials, and Sustainable Industries. Providing a user-friendly approach to the world of polymeric materials, the book allows students to integrate their chemical knowledge and establish a connection between fundamental and applied chemical information. It contains all of the elements of an introductory text with synthesis, property, application, and characterization. Special sections in each chapter contain definitions, learning objectives, questions, case studies and additional reading.
Continuing the tradition of its previous editions, the third edition of Introduction to Polymer Chemistry provides a well-rounded presentation of the principles and applications of natural, synthetic, inorganic, and organic polymers. With an emphasis on the environment and green chemistry and materials, this third edition offers detailed coverage of natural and synthetic giant molecules, inorganic and organic polymers, biomacromolecules, elastomers, adhesives, coatings, fibers, plastics, blends, caulks, composites, and ceramics. Using simple fundamentals, the book demonstrates how the basic principles of one polymer group can be applied to all of the other groups. It covers reactivities, synthesis and polymerization reactions, techniques for characterization and analysis, energy absorption and thermal conductivity, physical and optical properties, and practical applications. This edition addresses environmental concerns and green polymeric materials, including biodegradable polymers and microorganisms for synthesizing materials. Case studies woven within the text illustrate various developments and the societal and scientific contexts in which these changes occurred. Now including new material on environmental science, Introduction to Polymer Chemistry, Third Edition remains the premier book for understanding the behavior of polymers. Building on undergraduate work in foundational courses, the text fulfills the American Chemical Society Committee on Professional Training (ACS CPT) in-depth course requirement.
Introduction to Polymer Chemistry provides undergraduate students with a much-needed, well-rounded presentation of the principles and applications of natural, synthetic, inorganic, and organic polymers. With an emphasis on the environment and green chemistry and materials, this fourth edition continues to provide detailed coverage of natural and synthetic giant molecules, inorganic and organic polymers, elastomers, adhesives, coatings, fibers, plastics, blends, caulks, composites, and ceramics. Building on undergraduate work in foundational courses, the text fulfills the American Chemical Society Committee on Professional Training (ACS CPT) in-depth course requirement
Research into polymer nanofibers has increased significantly over the last decade, prompting the need for a comprehensive monograph examining the subject as knowledge of their properties and potential applications has increased. Postgraduate students and researchers new to the field will benefit from the "from materials to applications" approach to the book, which examines the physio-chemical properties in detail, demonstrating how they can be exploited for a diverse range of applications, including the production of light and wound dressings. Techniques for the fabrication, notably electrospinning, are discussed at length. This book provides a unique and accessible source of information, summarising the last decade of the field and presenting an entry point for those entering the field and an inspiration to established workers. The author is currently the national coordinator for several research projects examining the applications of polymer nanofibers, alongside active international collaborations.
Continuing the tradition of its previous editions, the third edition of Introduction to Polymer Chemistry provides a well-rounded presentation of the principles and applications of natural, synthetic, inorganic, and organic polymers. With an emphasis on the environment and green chemistry and materials, this third edition offers detailed coverage of natural and synthetic giant molecules, inorganic and organic polymers, biomacromolecules, elastomers, adhesives, coatings, fibers, plastics, blends, caulks, composites, and ceramics. Using simple fundamentals, the book demonstrates how the basic principles of one polymer group can be applied to all of the other groups. It covers reactivities, synthesis and polymerization reactions, techniques for characterization and analysis, energy absorption and thermal conductivity, physical and optical properties, and practical applications. This edition addresses environmental concerns and green polymeric materials, including biodegradable polymers and microorganisms for synthesizing materials. Case studies woven within the text illustrate various developments and the societal and scientific contexts in which these changes occurred. Now including new material on environmental science, Introduction to Polymer Chemistry, Third Edition remains the premier book for understanding the behavior of polymers. Building on undergraduate work in foundational courses, the text fulfills the American Chemical Society Committee on Professional Training (ACS CPT) in-depth course requirement.
This contributed volume sheds new light on waste management and the production of biofuels. The authors share insights into microbial applications to meet the challenges of environmental pollution and the ever- growing need for renewable energy. They also explain how healthy and balanced ecosystems can be created and maintained using strategies ranging from oil biodegration and detoxification of azo dyes to biofouling. In addition, the book illustrates how the metabolic abilities of microorganisms can be used in microbial fuel-cell technologies or for the production of biohydrogen. It inspires young researchers and experienced scientists in the field of microbiology to explore the application of green biotechnology for bioremediation and the production of energy, which will be one of the central topics for future generations.