Download Free Biofouling Book in PDF and EPUB Free Download. You can read online Biofouling and write the review.

Biofouling (the colonisation of an interface by a diverse array of organisms) is almost always a problem where it occurs, as it negatively affects surfaces, the materials that they are made from and the structures that they form, and can even destroy them. This comprehensive book covers in detail in its first section the processes involved in marine , freshwater and medical biofouling including coverage of settlement by larvae and spores, biofouling community processes, epibiosis (biofouling on living organisms) and microbial fouling, including biofilms deleterious to human health. The book's second section, encompassing biofouling processes with industrial implications, includes coverage of biofouling on artificial substrata, paints and coatings technology for the control of marine biofouling, biofouling and antifouling in the maritime industries, such as shipping, offshore oil , and aquaculture, and in power stations and other industries. The impacts of both biofouling and biofouling control and details of current legislation of relevance to biofouling issues are fully covered. The book's final section looks at methods for the measurement of biofouling, and future prospects for biofouling, including in-depth coverage of the changes anticipated in biofouling worldwide due to global climate change, and likely future directions in antifouling research, technology and legislation. Biofouling, which includes contributions from many international experts, is an essential reference for all those working in the antifouling industry including those involved in formulation of antifouling products such as paints and other coatings. Aquatic biologists, ecologists, environmental scientists and lawyers, marine engineers, aquaculture personnel, chemists, and medical researchers will all find much of interest within this book. All universities and research establishments where these subjects are studied and taught should have copies of this important work on their shelves.
Biofouling is a costly problem, and it is encountered in a wide spectrum of technical systems, ranging from the shipping industry, power industry, water purification, automobile industry, paint and pharmaceuticals, to the microelectronics and food industries. Micro- and macroorganisms attach to surfaces and accumulate there, forming biofilms that cause interferences – a fundamentally natural process. Usually, a medical paradigm is applied: kill biofilms and the problem is solved. This leads to excessive biocide use. However, the success of this strategy is very limited; furthermore it leads to equipment damage and environmental pollution. Simply trying to kill the fouling organisms is clearly not seen as a successful strategy while cleaning is put forward as much more important. In this book, strategies to prevent adhesion, to mitigate the extent and effects of biofouling, and to detect and remove fouling layers are presented. Holistic approaches to the fouling process are elaborated, taking into account options such as nutrient limitation, repellent and easy-to-clean surfaces for fouling layer limitation, and replacing biocides with more environmentally friendly methods – in other words: learning how to live with fouling biofilms without suffering the damage they can do.
Microbial growth and contamination ("Biofouling") in water systems represents a significant threat to the quality of waters produced for the microelectronic, pharmaceutical, petroleum, paper, food and other manufacturing industries. Biofouling can lead to biologically induced corrosion ("Biocorrosion"), which can cause severe damage to the equipment. Both biofouling and biocorrosion are frequently not recognized in time, underestimated, or linked with the wrong causes. The book represents a new approach by introducing biofilm properties and dynamics as basic principles of biofouling and biocorrosion, thus providing a better understanding and the means of fighting the undesired effects of biofilms. The most important features are: Case histories of biofouling in water treatment.- Detection and monitoring of biofouling.- Reverse osmosis membrane biofouling.- Biocide efficacy and biofouling control.- Plant design considerations for preventing biofouling.- Case histories of biocorrosion.- Detection, monitoring, control and prevention of biocorrosion.- Fundamentals of biofouling and biocorrosion mechanisms.
Industrial Biofouling discusses the the challenges--and to a lesser extent, the benefits--of biofilms on industrial processing surfaces. It addresses the operating problems caused by establishment and growth of microorganisms, thereby enabling effective equipment design and operation that minimizes biofouling. - Discusses the chemical and physical control of biofilm growth, with coverage of dosing techniques, equipment cleaning, and cost management - Presents methods for monitoring and evaluating the effectiveness of control techniques - Incorporates explicit figures and diagrams to aid in understanding
"The third book in the Sustainable Well Series, Microbiology of Well Biofouling, is the second edition of Practical Manual of Groundwater Microbiology. It is concerned with solving production problems in all types of wells. See what's new in the new edition: Addresses deleterious events in all types of wells in greater detail Discusses the generation of mass which interferes with the physical functioning of a well Covers the major innovations in the field Includes more field applicable material Completely revised and updated
The study of membrane biofouling has increased strongly in the past four years, compared to the previous twenty two years, indicated by the more than doubling of the number of scientific papers. However, no single source gives an updated overview of biofouling. Biofouling of Spiral Wound Membrane Systems gives a complete and comprehensive overview of all aspects of biofouling, bridging the gap between microbiology, hydraulics and membrane technology. High quality drinking water can be produced with membrane filtration processes like reverse osmosis (RO) and nanofiltration (NF). As the global demand for fresh clean water is increasing, these membrane technologies are increasingly important. One of the most serious problems in RO/NF applications is biofouling – excessive growth of biomass – affecting the performance of the RO/NF systems. This can be due to the increase in pressure drop across membrane elements (feed-concentrate channel), the decrease in membrane permeability or the increase in salt passage. These phenomena result in the need to increase the feed pressure to maintain constant production and to clean the membrane elements chemically. Biofouling of Spiral Wound Membrane Systems relates biomass accumulation in spiral wound RO and NF membrane elements with membrane performance and hydrodynamics and determines parameters influencing biofouling. It focuses on the development of biomass in the feed-concentrate (feed-spacer) channel and its effect on pressure drop and flow distribution. It can be used to develop an integral strategy to control biofouling in spiral wound membrane systems. Most past and present methods to control biofouling have not been very successful. An overview of several potential complementary approaches to solve biofouling is given and an integrated approach for biofouling control is proposed.
Most of the pipelines used for the transport of various fluids are susceptible to the formation of biofilms, and the undesirable accumulation of microorganisms in pipelines leads to biodeterioration and increases the maintenance cost of the pipelines. This book focuses on nanostructured polymetallic coatings for corrosion and biofouling protection in offshore oil and gas pipelines, marine pipelines, ship structures and port facilities, and corrosion resistance surfaces of several engineered structures. Considering various reasons of biofouling in pipelines that transport crude and refined petroleum, gas, biofuels, and other fluids including sewage, slurry, and water for drinking or irrigation, the underlying mechanism is thoroughly explained. A comparison of various protective techniques is also highlighted for the choice of methods for specific applications. Features: Provides information on biofouling control with broad significance and applicability in various industrial and research areas. Discusses microbially induced corrosion on biofuel transporting pipelines. Includes data from experiments conducted to overcome biofouling and biocorrosion. Gives out particular attention to metallic coatings and environmental considerations. Explores novel technologies preventing biofouling on metallic and polymeric substrates. This book is for researchers and graduate students in Coatings and Paints, Microbiology, Bioprocess Engineering, Biotechnology, Industrial Engineering, Mechanical and Chemical Engineering, Marine Engineering, Surface and Corrosion Engineering, and Water and Wastewater Treatment.
Supramolecular chemistry, "the chemistry beyond the molecule", is a fascinating realm of modern science. The design of novel supramolecular structures, surfaces, and techniques are at the forefront of research in different application areas, including corrosion and biofouling protection. A team of international experts provide a comprehensive view of the applications and potential of supramolecular chemistry in corrosion and biofouling prevention. Chapter topics include types and fundamentals of supramolecules, supramolecular polymers and gels, host-guest inclusion compounds, organic-inorganic hybrid materials, metallo-assemblies, cyclodextrins, crown ethers, mesoporous silica and supramolecular structures of graphene and other advances. Additional Features include: Focuses on different aspects of supramolecular chemistry in corrosion and biofouling prevention. Comprehensively covers supramolecular interactions that can provide better corrosion and biofouling protection. Provides the latest developments in self-healing coatings. Explores recent research advancements in the suggested area. Includes case studies specific to industries. The different supramolecular approaches being investigated to control corrosion and biofouling are gathered in one well-organized reference to serve senior undergraduate and graduate students, research students, engineers, and researchers in the fields of corrosion science & engineering, biofouling, and protective coatings.