Download Free Bioconjugate Techniques Book in PDF and EPUB Free Download. You can read online Bioconjugate Techniques and write the review.

Bioconjugate Techniques, 2nd Edition, is the essential guide to the modification and cross linking of biomolecules for use in research, diagnostics, and therapeutics. It provides highly detailed information on the chemistry, reagent systems, and practical applications for creating labeled or conjugate molecules. It also describes dozens of reactions with details on hundreds of commercially available reagents and the use of these reagents for modifying or cross linking peptides and proteins, sugars and polysaccharides, nucleic acids and oligonucleotides, lipids, and synthetic polymers. A one-stop source for proven methods and protocols for synthesizing bioconjugates in the lab Step-by-step presentation makes the book an ideal source for researchers who are less familiar with the synthesis of bioconjugates More than 600 figures that visually describe the complex reactions associated with the synthesis of bioconjugates Includes entirely new chapters on the latest areas in the field of bioconjugation as follows: Microparticles and nanoparticlesSilane coupling agentsDendrimers and dendronsChemoselective ligationQuantum dotsLanthanide chelatesCyanine dyesDiscrete PEG compoundsBuckyballs,fullerenes, and carbon nanotubesMass tags and isotope tagsBioconjugation in the study of protein interactions
Bioconjugate Techniques is the essential guide to the modification and crosslinking of biomolecules for use in research, diagnostics, and therapeutics. It provides highly detailed information on the chemistry, reagent systems, and practical applications for creating labeled or conjugate molecules. It also describes dozens of reactions with details on hundreds of commercially available reagents and the use of these reagents for modifying or crosslinking peptides and proteins, sugars and polysaccharides, nucleic acids and oligonucleotides, lipids, and synthetic polymers. Armed with this information and the abundant protocols provided, readers will form unique complexes that can be used for detecting, quantifying, and targeting important analytes. This book helps readers make: high activity antibody-enzymes conjugates, immunotoxins, immunogen complexes, liposome conjugates; as well as biotinylated molecules, avidin or streptavidin conjugates, colloidal gold labeled proteins, PEG or dextran complexes, labeled oligonucleotide probes, and fluorescently tagged or radiolabeled molecules. This book is the first to thoroughly capture the entire field of bioconjugate chemistry in a single volume Serves as a practical guide to modification and cross-linking technology for research, diagnostics, and therapeutics Provides useful, detailed, easy-to-follow, step-by-step protocols Contains easy-to-read, and easy-to-understand key concepts for making bioconjugates of all types Efficiently covers the chemistry of bioconjugation, the major reagents available for modification and cross-linking, and the application of these reagents to the synthesis of highly active conjugates Cites over more than references keyed to concepts covered in the book Uses more than 600 figures to illustrate bioconjugate reagents, their reactions, and applications Suggests sources for all key reagents
Explores bioconjugate properties and applications of polymers, dendrimers, lipids, nanoparticles, and nanotubes Bioconjugation has enabled breakthroughs across many areas of industry and biomedicine. With its emphasis on synthesis, properties and applications, this book enables readers to understand the connection between chemistry and the biological application of bioconjugated materials. Its detailed descriptions of methods make it possible for researchers to fabricate and take full advantage of bioconjugates for a broad range of applications. Moreover, the book sets the foundation for the development of new applications, including assays, imaging, biosensors, drug delivery, and diagnostics. Chemistry of Bioconjugates features contributions from an international team of leading experts and pioneers in the field. These contributions reflect the authors’ firsthand laboratory experience as well as a thorough review of the current literature. The book’s six sections examine: General methods of bioconjugation Polymer bioconjugates Organic nanoparticle-based bioconjugates Inorganic nanomaterial bioconjugates, including metals and metal oxides Cell-based, hydrogel/microgel, and glyco-bioconjugates Characterization, physico-(bio)chemical properties, and applications of bioconjugates This comprehensive exploration of bioconjugates includes discussions of polymers, dendrimers, lipids, nanoparticles, and nanotubes. References at the end of each chapter serve as a gateway to the most important original research findings and reviews in the field. By drawing together and analyzing all the latest chemical methods and research findings on the physico-chemical and biochemical properties of bioconjugates, Chemistry of Bioconjugates sheds new light on the significance and potential of bioconjugation. The book is recommended for organic and polymer chemists, biochemists, biomaterial scientists, carbohydrate chemists, biophysicists, bioengineers, and drug and gene delivery scientists.
Chemical Linkers in Antibody-Drug Conjugates aims to shine a detailed light on the various key attributes of chemical linkers in ADCs, for drug-to-antibody ratio, for stability, for release mechanism of payload, for pharmacokinetics, for stability determination, and for efficacy and safety.
This unique reference provides a pragmatic approach to the development of successful commercial immunodiagnostic products based on enzyme immunoessay technology. Presenting both the basic and applied principles, Enzyme Immunoassays gathers information on all aspects of this process, from the initial conceptualization to the introduction of the product to the market.
Bioconjugate Techniques, Third Edition, is the essential guide to the modification and cross linking of biomolecules for use in research, diagnostics, and therapeutics. It provides highly detailed information on the chemistry, reagent systems, and practical applications for creating labeled or conjugate molecules. It also describes dozens of reactions, with details on hundreds of commercially available reagents and the use of these reagents for modifying or crosslinking peptides and proteins, sugars and polysaccharides, nucleic acids and oligonucleotides, lipids, and synthetic polymers. - Offers a one-stop source for proven methods and protocols for synthesizing bioconjugates in the lab - Provides step-by-step presentation makes the book an ideal source for researchers who are less familiar with the synthesis of bioconjugates - Features full color illustrations - Includes a more extensive introduction into the vast field of bioconjugation and one of the most thorough overviews of immobilization chemistry ever presented
Providing practical and proven solutions for antibody-drug conjugate (ADC) drug discovery success in oncology, this book helps readers improve the drug safety and therapeutic efficacy of ADCs to kill targeted tumor cells. • Discusses the basics, drug delivery strategies, pharmacology and toxicology, and regulatory approval strategies • Covers the conduct and design of oncology clinical trials and the use of ADCs for tumor imaging • Includes case studies of ADCs in oncology drug development • Features contributions from highly-regarded experts on the frontlines of ADC research and development
With its Student Workbook CD-ROM and new case studies, the Fifth Edition of this acclaimed self-paced review enables students to master the principles and applications of organic functional groups. Moreover, it prepares students for the required pharmacy courses in medicinal chemistry by thoroughly covering nomenclature, physical properties, chemical properties, and metabolism. As students progress through the text, they will develop such important skills as drawing chemical structures and predicting the solubility, instabilities, and metabolism of each organic functional group.
Provides timely, comprehensive coverage of in vivo chemical reactions within live animals This handbook summarizes the interdisciplinary expertise of both chemists and biologists performing in vivo chemical reactions within live animals. By comparing and contrasting currently available chemical and biological techniques, it serves not just as a collection of the pioneering work done in animal-based studies, but also as a technical guide to help readers decide which tools are suitable and best for their experimental needs. The Handbook of In Vivo Chemistry in Mice: From Lab to Living System introduces readers to general information about live animal experiments and detection methods commonly used for these animal models. It focuses on chemistry-based techniques to develop selective in vivo targeting methodologies, as well as strategies for in vivo chemistry and drug release. Topics include: currently available mouse models; biocompatible fluorophores; radionuclides for radiodiagnosis/radiotherapy; live animal imaging techniques such as positron emission tomography (PET) imaging; magnetic resonance imaging (MRI); ultrasound imaging; hybrid imaging; biocompatible chemical reactions; ligand-directed nucleophilic substitution chemistry; biorthogonal prodrug release strategies; and various selective targeting strategies for live animals. -Completely covers current techniques of in vivo chemistry performed in live animals -Describes general information about commonly used live animal experiments and detection methods -Focuses on chemistry-based techniques to develop selective in vivo targeting methodologies, as well as strategies for in vivo chemistry and drug release -Places emphasis on material properties required for the development of appropriate compounds to be used for imaging and therapeutic purposes in preclinical applications Handbook of In Vivo Chemistry in Mice: From Lab to Living System will be of great interest to pharmaceutical chemists, life scientists, and organic chemists. It will also appeal to those working in the pharmaceutical and biotechnology industries.
Surface plasmon resonance (SPR) plays a dominant role in real-time interaction sensing of biomolecular binding events, this book provides a total system description including optics, fluidics and sensor surfaces for a wide researcher audience.