Download Free Bio Inspired Structured Adhesives Book in PDF and EPUB Free Download. You can read online Bio Inspired Structured Adhesives and write the review.

This book deals with the adhesion, friction and contact mechanics of living organisms. Further, it presents the remarkable adhesive abilities of the living organisms which inspired the design of novel micro- and nanostructured adhesives that can be used in various applications, such as climbing robots, reusable tapes, and biomedical bandages. The technologies for both the synthesis and construction of bio-inspired adhesive micro- and nanostructures, as well as their performance, are discussed in detail. Representatives of several animal groups, such as insects, spiders, tree frogs, and lizards, are able to walk on (and therefore attach to) tilted, vertical surfaces, and even ceilings in different environments. Studies have demonstrated that their highly specialized micro- and nanostructures, in combination with particular surface chemistries, are responsible for this impressive and reversible adhesion. These structures can maximize the formation of large effective contact areas on surfaces of varying roughness and chemical composition under different environmental conditions.
Master simple to advanced biomaterials and structures with this essential text. Featuring topics ranging from bionanoengineered materials to bio-inspired structures for spacecraft and bio-inspired robots, and covering issues such as motility, sensing, control and morphology, this highly illustrated text walks the reader through key scientific and practical engineering principles, discussing properties, applications and design. Presenting case studies for the design of materials and structures at the nano, micro, meso and macro-scales, and written by some of the leading experts on the subject, this is the ideal introduction to this emerging field for students in engineering and science as well as researchers.
This book contains contributions from leading researchers in biomechanics, nanomechanics, tribology, contact mechanics, materials science and applications on various experimental techniques including atomic force microscopy (AFM) for studying soft, biomimetic and biological materials and objects. Biologists, physicists, researchers applying methods of contact mechanics and researchers testing materials using indentation techniques along with many other applied scientists will find this book a useful addition to their libraries. Moreover, several reviews in this book are written as introductions to several important and rather sophisticated research areas such as depth-sensing indentation, studying of biological cells by AFM probes, mechanics of adhesive contact and contact between viscoelastic (hereditary elastic) solids. The book containing new theoretical models, results of experimental studies and numerical simulations, along with reviews of above mentioned areas of contact mechanics in application to biological systems, would be beneficial for researchers in many areas of biology, medicine, engineering, mechanics and biomimetics.
Bio-inspired design (also called biomimetics or biomimicry) is a promising approach for the development of innovative technical products – not only in mechanical engineering, but also in areas such as material science and even computer engineering. Innovations such as humanoid robots or multifunctional materials have shown the potential of bio-inspired design. However, in industrial companies, bio-inspired design remains an “exotic” approach which is rarely used in innovation practice. One reason for this is a lack of knowledge on how to implement bio-inspired design in practice. Therefore, this guide book was written to explain the application of bio-inspired design methods and tools. The target groups are professional engineers and biologists, as well as students of both disciplines. The book presents a selection of methods for specific activities in bio-inspired design, namely: planning a bio-inspired design project, abstraction, search, analysis and comparison, and transfer of analogies. Factsheets give an overview of each method, its advantages and challenges, and its suitability for different bio-inspired design approaches and scenarios. To facilitate understanding, all methods are explained with the help of the same example. In addition, ten best practice examples show the practical applicability of bio-inspired design.
Biobased Adhesives Unique and comprehensive book edited by acknowledged leaders on biobased adhesives that will replace petroleum-based adhesives. This book contains 23 chapters covering the various ramifications of biobased adhesives. The chapters are written by world-class scientists and technologists actively involved in the arena of biobased adhesives. The book is divided into three parts: Part 1: Fundamental Aspects; Part 2: Classes of Biobased Adhesives; and Part 3: Applications of Biobased Adhesives. Topics covered include: an introduction to biobased adhesives; adhesion theories and adhesion and surface issues with biobased adhesives; chemistry of adhesives; biorefinery products as biobased raw materials for adhesives; naturally aldehyde-based thermosetting resins; natural crosslinkers; curing and adhesive bond strength development in biobased adhesives; mimicking nature; bio-inspired adhesives; protein adhesives; carbohydrates as adhesives; natural polymer-based adhesives; epoxy adhesives from natural materials; biobased polyurethane adhesives; nanocellulose-modified adhesives; debondable, recyclable, and biodegradable biobased adhesives; 5-Hydroxymethylfurfural-based adhesives; adhesive precursors from tree-derived naval stores; and applications in various diverse arenas such as wood bonding, controlled drug delivery, and wearable bioelectronics. Audience This book will interest materials scientists, adhesionists, polymer chemists, marine biologists, food and agriculture scientists, and environmentalists. R&D personnel in a slew of wide-ranging industries such as aviation, shipbuilding, railway, automotive, packaging, construction, wood bonding, and composites should find this book a repository of current and much-needed information.
The solutions to technical challenges posed by flight and space exploration tend to be multidimensional, multifunctional, and increasingly focused on the interaction of systems and their environment. The growing discipline of biomimicry focuses on what humanity can learn from the natural world. Biomimicry for Aerospace: Technologies and Applications features the latest advances of bioinspired materials–properties relationships for aerospace applications. Readers will get a deep dive into the utility of biomimetics to solve a number of technical challenges in aeronautics and space exploration. Part I: Biomimicry in Aerospace: Education, Design, and Inspiration provides an educational background to biomimicry applied for aerospace applications. Part II: Biomimetic Design: Aerospace and Other Practical Applications discusses applications and practical aspects of biomimetic design for aerospace and terrestrial applications and its cross-disciplinary nature. Part III: Biomimicry and Foundational Aerospace Disciplines covers snake-inspired robots, biomimetic advances in photovoltaics, electric aircraft cooling by bioinspired exergy management, and surrogate model-driven bioinspired optimization algorithms for large-scale and complex problems. Finally, Part IV: Bio-Inspired Materials, Manufacturing, and Structures reviews nature-inspired materials and processes for space exploration, gecko-inspired adhesives, bioinspired automated integrated circuit manufacturing on the Moon and Mars, and smart deployable space structures inspired by nature. - Introduces educational aspects of bio-inspired design for novel and practical technologies - Presents a series of bio-inspired technologies applicable to the field of aerospace engineering - Provides an introduction to nature-inspired design and engineering and its relevance to planning and developing the next generation of robotic and human space missions
Many modern surface coatings and adhesives are derived from fossil feedstocks. With fossil fuels becoming more polluting and expensive to extract as supplies dwindle, industry is turning increasingly to nature, mimicking natural solutions using renewable raw materials and employing new technologies. Highlighting sustainable technologies and applications of renewable raw materials within the framework of green and sustainable chemistry, circular economy and resource efficiency, this book provides a cradle-to-cradle perspective. From potential feedstocks to recycling/reuse opportunities and the de-manufacture of adhesives and solvents, green chemistry principles are applied to all aspects of surface coating, printing, adhesive and sealant manufacture. This book is ideal for students, researchers and industrialists working in green sustainable chemistry, industrial coatings, adhesives, inks and printing technologies.
Due to their impressive performance biological adhesives have inspired the development of superior industrial adhesives. Biological adhesives often provide elegant solutions to engineering and biomedical requirements and are expected to inspire future technological innovations for adhesives for use in hostile conditions. Containing a selection of papers presented at the 1st International Conference on Biological and Biomimetic Adhesives, this book will showcase the latest advances in the chemical and structural characterisation of adhesives, the mechanical testing of adhesives and theory, fabrication and applications of biomimetic adhesives. Following the work of COST Action TD0909, the aim is to gain greater understanding of the mode of action of biological adhesives to allow successful development of improved synthetic counterparts. Appealing to a wide range of researchers in biology, chemistry, physics and engineering, the title provides the background and drive to improve scientific and technological progress in this important area.
Structural Adhesives Uniquely provides up-to-date and comprehensive information on the topic in an easily-accessible form. A structural adhesive can be described as a high-strength adhesive material that is isotropic in nature and bonds two or more parts together in a load-bearing structure. A structural adhesive material must be capable of transmitting the stress/load without loss of structural integrity within design limits. There are many types of established structural adhesives, including epoxy, urethane, acrylic, silicone, etc. Structural Adhesives comprises nine chapters and is divided into two parts: Part 1, Preparation, Properties, and Characterization; Part 2, Applications. The topics covered include: structural epoxy adhesives; biological reinforcement of epoxies as structural adhesives; marble dust reinforced epoxy structural adhesive composites; characterization of various structural adhesive materials; effects of shear and peel stress distributions on the behavior of structural adhesives; the inelastic response of structural aerospace adhesives; structural reactive acrylic adhesives: their preparation, characterization, properties, and applications; application of structural adhesives in composite connections; and naval applications of structural adhesives. Audience This book should be of much use and interest to adhesionists, materials scientists, adhesive technologists, polymer scientists, and those working in the construction, railway, automotive, aviation, bridge, and shipbuilding industries.
This volume presents a series of case studies, at different levels of inclusivity, of how organisms exhibit functional convergence as a key evolutionary mechanism resulting in responses to similar environmental constraints in mechanically similar ways. The contributors to this volume have selected and documented cases of convergent evolution of form and function that are perceived to be driven by environmental abiotic and/or biotic challenges that fall within their areas of expertise. Collectively these chapters explore this phenomenon across a broad phylogenetic spectrum. The sequence of chapters follows the organizational principle of increasing phylogenetic inclusivity, rather than the clustering of chapters by perceived similarity of the phenotypic features or biomechanical challenges being considered. This is done to maintain focus on the evolutionary phenomenon that is the primary subject matter of the book, thereby providing a basis for discussion among the readership about what is necessary and sufficient to justify the recognition of functional convergence. All chapters stress the need for integrative approaches for the elucidation of both pattern and process as they relate to convergence at various taxonomic levels.