Download Free Bio Genesis Book in PDF and EPUB Free Download. You can read online Bio Genesis and write the review.

Biogenesis provides an up-to-date and detailed discussion of the interdisciplinary study of the origin of life, including in-depth investigations into its history, assumptions, experimental strategies, theories, models, and controversies. Written both critically and objectively, the book explores topics including the history of the search for life's origin from the Greek philosophers to contemporary scientists; selected attributes of life which are connected to theories of biogenesis; the main features of our solar system and earth, where life is assumed to have originated; and the rationale and strategies of scientific theories of the origin of life. Filled with fascinating insights, Biogenesis will appeal to a wide range of scientists and students in biology, chemistry, and geology.
Told in the manner of scientific reports, this collection of science fiction stories explores the allegorical overtones about the precariousness of species. Biogenesis and Other Stories collects five stories by Tatsuaki Ishiguro. In Biogenesis, two professors research the rare winged mouse and how the genetic makeup of the creatures pointed to their eventual extinction. The discover that upon mating, both the male and female of the species died. The professors try to clone the winged mice without success, so they breed the remaining pair in captivity, noting the procedure, which includes a vibration of the creatures' wings, what appeared to be kissing, and the shedding of tears—composed of the same substance as their blood—until their eventual death.
Chloroplast is the organelle where the life-giving process photosynthesis takes place; it is the site where plants and algae produce food and oxygen that sustain our life. The story of how it originates from proplastids, and how it ultimately dies is beautifully portrayed by three authorities in the field: Basanti Biswal, Udaya Biswal and M. K. Raval. I consider it a great privilege and honor to have been asked to write this foreword. The book ' Chloroplast biogenesis: from proplastid to gerontoplast' goes much beyond photosynthesis. The character of the book is different from that of many currently available books because it provides an integrated approach to cover the entire life span of the organelle including its senescence and death. The books available are mostly confined to the topics relating to the 'build up' or development of chloroplast during greening. The story of organelle biogenesis without description of the events associated with its regulated dismantling during genetically programmed senescence is incomplete. A large volume of literature is available in this area of chloroplast senescence accumulated during the last 20 years. Although some of the findings in this field have been organized in the form of reviews, the data in the book are generalized and integrated with simple text and graphics. This book describes the structural features of prop las tid and its transformation to fully mature chloroplast, which is subsequently transformed into gerontoplast exhibiting senescence syndrome. The book consists of five major chapters.
Named one of The New Yorker's BEST BOOKS OF 2022 SO FAR The next frontier in technology is inside our own bodies. Synthetic biology will revolutionize how we define family, how we identify disease and treat aging, where we make our homes, and how we nourish ourselves. This fast-growing field—which uses computers to modify or rewrite genetic code—has created revolutionary, groundbreaking solutions such as the mRNA COVID vaccines, IVF, and lab-grown hamburger that tastes like the real thing. It gives us options to deal with existential threats: climate change, food insecurity, and access to fuel. But there are significant risks. Who should decide how to engineer living organisms? Whether engineered organisms should be planted, farmed, and released into the wild? Should there be limits to human enhancements? What cyber-biological risks are looming? Could a future biological war, using engineered organisms, cause a mass extinction event? Amy Webb and Andrew Hessel’s riveting examination of synthetic biology and the bioeconomy provide the background for thinking through the upcoming risks and moral dilemmas posed by redesigning life, as well as the vast opportunities waiting for us on the horizon.
This book provides the first modern and truly comprehensive coverage of the biochemistry, genetics, and pathology of mitochondria in different organisms. It particularly focuses on the recent advances in our understanding of basic mitochondrial research to the consequences of dysfunction at the molecular level. (Cover)
Membrane proteins and membrane lipids form complex interactive systems that are highly dynamic and able to be studied only by combinations of different in vivo and in vitro techniques. In Membrane Biogenesis: Methods and Protocols, experts in the field present a broad collection of methods to study the biogenesis and function of cellular membranes. Beginning with how membrane lipids or membrane proteins can be studied, this detailed volume continues with sections covering different procedures to investigate the interaction of membrane proteins among each other or with membrane lipids, methods to study the biogenesis of membrane proteins and the dynamics of organelles, as well as protocols for the analyses of the functions or complex organization of membrane proteins. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Extensive and easily applicable, Membrane Biogenesis: Methods and Protocols provides readers with a comprehensive but still concise collection including both basic protocols of rather general application and more specialized methods for specific and novel techniques.
Develops a model of the origin of life in which cells originate first, proteins follow, and genes evolve last, which is supported by evidence mustered from biology, biochemistry, and biophysics. This work explores the origins of life and is for anyone who has ever thought seriously about the origin of life.
The Biogenesis of Cellular Organelles represents a comprehensive summary of recent advances in the study of the biogenesis and functional dynamics of the major organelles operating in the eukaryotic cell. This book begins by placing the study of organelle biogenesis in a historical perspective by describing past scientific strategies, theories, and findings and relating these foundations to current investigations. Reviews of protein and lipid mediators important for organelle biogenesis are then presented, and are followed by summaries focused on the endoplasmic reticulum, Golgi, lysosome, nucleus, mitochondria, and peroxisome.
Concise chapters, written by experts in the field, cover a wide spectrum of topics on lipid and membrane formation in microbes (Archaea, Bacteria, eukaryotic microbes).All cells are delimited by a lipid membrane, which provides a crucial boundary in any known form of life. Readers will discover significant chapters on microbial lipid-carrying biomolecules and lipid/membrane-associated structures and processes.