Download Free Between Science And Technology Book in PDF and EPUB Free Download. You can read online Between Science And Technology and write the review.

This edited volume explores the interplay between philosophies in a wide-ranging analysis of how technological applications in science inform our systems of thought. Beginning with a historical background, the volume moves on to explore a host of topics, such as the uses of technology in scientific observations and experiments, the salient relationship between technology and mechanistic notions in science and the ways in which today’s vast and increasing computing power helps scientists achieve results that were previously unattainable. Technology allows today’s researchers to gather, in a matter of hours, data that would previously have taken weeks or months to assemble. It also acts as a kind of metaphor bank, providing biologists in particular with analogies (the heart as a ‘pump’, the nervous system as a ‘computer network’) that have become common linguistic currency. This book also examines the fundamental epistemological distinctions between technology and science and assesses their continued relevance. Given the increasing amalgamation of the philosophies of science and technology, this fresh addition to the literature features pioneering work in a promising new field that will appeal both to philosophers and scientific historiographers.
Publisher description
The interrelations of science and technology as an object of study seem to have drawn the attention of a number of disciplines: the history of both science and technology, sociology, economics and economic history, and even the philosophy of science. The question that comes to mind is whether the phenomenon itself is new or if advances in the disciplines involved account for this novel interest, or, in fact, if both are intercon nected. When the editors set out to plan this volume, their more or less explicit conviction was that the relationship of science and technology did reveal a new configuration and that the disciplines concerned with 1tS analysis failed at least in part to deal with the change because of conceptual and methodological preconceptions. To say this does not imply a verdict on the insufficiency of one and the superiority of any other one disciplinary approach. Rather, the situation is much more complex. In economics, for example, the interest in the relationship between science and technology is deeply influenced by the theoretical problem of accounting for the factors of economic growth. The primary concern is with technology and the problem is whether the market induces technological advances or whether they induce new demands that explain the subsequent diffusion of new technologies. Science is generally considered to be an exogenous factor not directly subject to market forces and, therefore, appears to be of no interest.
Longer-term developments shape the present and endogenous futures of institutions and practices of science and technology in society and their governance. Understanding the patterns allows diagnosis and soft intervention, often linked to scenario exercises. The book collects six articles offering key examples of this perspective, addressing ongoing issues in the governance of science and technology, including nanotechnology and responsible research and innovation. And adds two more articles that address background philosophical issues.
Economics has the capacity to offer us deep insights into some of the most formidable problems of life, and offer solutions to them too. Combining a global approach with examples from everyday life, Partha Dasgupta describes the lives of two children who live very different lives in different parts of the world: in the Mid-West USA and in Ethiopia. He compares the obstacles facing them, and the processes that shape their lives, their families, and their futures. He shows how economics uncovers these processes, finds explanations for them, and how it forms policies and solutions. Along the way, Dasgupta provides an intelligent and accessible introduction to key economic factors and concepts such as individual choices, national policies, efficiency, equity, development, sustainability, dynamic equilibrium, property rights, markets, and public goods. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
This book provides a significant contribution to scholarship on the psychology of science and the psychology of technology by showcasing a range of theory and research distinguished as psychological studies of science and technology. Science and technology are central to almost all domains of human activity, for which reason they are the focus of subdisciplines such as philosophy of science, philosophy of technology, sociology of knowledge, and history of science and technology. To date, psychology has been marginal in this space and limited to relatively narrow epistemological orientations. By explicitly embracing pluralism and an international approach, this book offers new perspectives and directions for psychological contributions. The book brings together leading theorists and researchers from around the world and spans scholarship across a variety of traditions that include theoretical psychology, critical psychology, feminist psychology and social constructionist approaches. Following a historical and conceptual introduction, the collection is divided into three sections: Scoping a New Psychology of Science and Technology, Applying Psychological Concepts to the Study of Science and Technology and Critical Perspectives on Psychology as a Science. The book will interest interdisciplinary scholars who work in the space of Science and Technology Studies and psychologists interested in the diverse human aspects of science and technology.
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
The volume is devoted to the relevant problems in the legal sphere, created and generated by recent advances in science and technology. In particular, it investigates a series of cutting-edge contemporary and controversial case-studies where scientific and technological issues intersect with individual legal rights. The book addresses challenging topics at the intersection of communication technologies and biotech innovations such as freedom of expression, right to health, knowledge production, Internet content regulation, accessibility and freedom of scientific research.
As the field of Science and Technology Studies (STS) has become more established, it has increasingly hidden its philosophical roots. While the trend is typical of disciplines striving for maturity, Steve Fuller, a leading figure in the field, argues that STS has much to lose if it abandons philosophy. In his characteristically provocative style, he offers the first sustained treatment of the philosophical foundations of STS and suggests fruitful avenues for further research. With stimulating discussions of the Science Wars, the Intelligent Design Theory controversy, and theorists such as Donna Haraway and Bruno Latour, Philosophy of Science and Technology Studies is required reading for students and scholars in STS and the philosophy of science.
An increasingly important and often overlooked issue in science and technology policy is recognizing the role that philanthropies play in setting the direction of research. In an era where public and private resources for science are strained, the practices that foundations adopt to advance basic and applied research needs to be better understood. This first-of-its-kind study provides a detailed assessment of the current state of science philanthropy. This examination is particularly timely, given that science philanthropies will have an increasingly important and outsized role to play in advancing responsible innovation and in shaping how research is conducted. Philanthropy and the Future of Science and Technology surveys the landscape of contemporary philanthropic involvement in science and technology by combining theoretical insights drawn from the responsible research and innovation (RRI) framework with empirical analysis investigating an array of detailed examples and case studies. Insights from interviews conducted with foundation representatives, scholars, and practitioners from a variety of sectors add real-world perspective. A wide range of philanthropic interventions are explored, focusing on support for individuals, institutions, and networks, with attention paid to the role that science philanthropies play in helping to establish and coordinate multi-sectoral funding partnerships. Novel approaches to science philanthropy are also considered, including the emergence of crowdfunding and the development of new institutional mechanisms to advance scientific research. The discussion concludes with an imaginative look into the future, outlining a series of lessons learned that can guide how new and established science philanthropies operate and envisioning alternative scenarios for the future that can inform how science philanthropy progresses over the coming decades. This book offers a major contribution to the advancement of philanthropic investment in science and technology. Thus, it will be of considerable interest to researchers and students in public policy, public administration, political science, science and technology studies, sociology of science, and related disciplines.