Download Free Benchmarking Against Experimental Data Of Neutronics And Thermohydraulic Computational Methods And Tools For Operation And Safety Analysis Of Research Reactors Book in PDF and EPUB Free Download. You can read online Benchmarking Against Experimental Data Of Neutronics And Thermohydraulic Computational Methods And Tools For Operation And Safety Analysis Of Research Reactors and write the review.

This publication presents the results of an IAEA coordinated research project (CRP). The benchmark analysis performed under this CRP covered steady state and transient conditions for research reactors across a range of designs, power levels, operating regimes and experimental facilities. The results obtained by the individual CRP participants are consolidated for each benchmark specification and conclusions are drawn on the specifications, modelling approaches and user effects, and computer codes used in the analysis. This publication supplements IAEA Technical Report Series No. 480, Research Reactor Benchmarking Database: Facility Specification and Experimental Data, which was developed within the same CRP. The publication is intended for use by operating organizations, researchers, regulatory bodies, designers and other interested parties involved in the safety, operation and utilization of research reactors. The individual country reports are available on the attached CD¬ROM.
Ion beam analysis techniques are non-destructive analytical techniques used to identify the composition and structure of surface layers of materials. The applications of these techniques span environmental control, cultural heritage and conservation, materials and fusion technologies. The particle-induced gamma-ray emission (PIGE) spectroscopy technique in particular, is a powerful tool for detecting light elements in certain depths of surface layers. This publication describes the coordinated effort to measure and compile cross section data relevant to PIGE analysis and make these data available to the community of practice through a comprehensive online database.
Results of the project "High Performance Light Water Reactor--Phase 2," carried out September 2006-February 2010 as part of the 6th European Framework Program.
This Safety Guide provides recommendations on the operating organization and on personnel for research reactors to meet the relevant requirements of IAEA Safety Standards Series No. SSR-3, Safety of Research Reactors. It covers the typical operating organization for research reactor facilities; the recruitment process and qualification in terms of education, training and experience; programmes for initial and continuing training; the authorization process for those individuals having an immediate bearing on safety; and the processes for their requalification and reauthorization. This Safety Guide is a revision of IAEA Safety Standards Series No. NS-G-4.5, which it supersedes.
Deterministic safety analysis is an important tool for confirming the adequacy and efficiency of provisions within the defence in depth concept for the safety of nuclear power plants (NPPs). IAEA Safety Standards Series No. NS-R-1.2 and Safety Reports Series No. 23 recommend, as one of the options for demonstrating the inclusion of adequate safety margins, the use of best estimate computer codes with realistic input data in combination with the evaluation of uncertainties in the calculation results. The evaluation of uncertainties is an issue of considerable complexity, and this Safety Report has been developed to complement the existing publications. It provides more detailed information on the methods available for the evaluation of uncertainties in deterministic safety analysis of NPPs and practical guidance in the use of these methods.
Accident analysis is an important tool for confirming the adequacy and efficiency of provisions within the defence in depth concept for the safety of nuclear power plants (NPPs). The purpose of the report is to provide the necessary practical guidance for performing adequate accident analysis in the light of current good practice worldwide.
This TECDOC deals with a basic concept of safety margins and their role in assuring safety of nuclear Installations. The document describes capabilities of thermal hydraulic computer codes used to determine safety margins, evaluation of uncertainties, methods for safety margin evaluation and utilization of safety margins in operation and modifications of nuclear power plants.
"Based on a recommendation from the Technical Working Group on Fast Reactors, this publication is a regular update of previous publications on fast reactor technology. The publication provides comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors. The main issues of discussion are experience in design, construction, operation and decommissioning, various areas of research and development, engineering, safety and national strategies, and public acceptance of fast reactors. In the summary the reader will find national strategies, international initiatives on innovative (i.e. Generation IV) systems and an assessment of public acceptance as related to fast reactors."--Résumé de l'éditeur.
Describes the state of knowledge of natural circulation in water cooled nuclear power plants and passive system reliability. The publication presents information on phenomena, models, predictive tools and experiments that currently support design and analysis of natural circulation systems, and highlights areas where additional research is needed.
Based on an IAEA coordinated research project focused on the use of passive safety systems and natural circulation to help meet the safety and economic goals of advanced nuclear power plants, this publication includes the identification and definition of the thermo-hydraulic phenomena that affect the reliability of passive safety systems, characterization of each phenomenon, integral tests to examine the passive systems and natural circulation, and a methodology for examining passive system reliability.