Download Free Behavioral And Neural Genetics Of Zebrafish Book in PDF and EPUB Free Download. You can read online Behavioral And Neural Genetics Of Zebrafish and write the review.

The past decade has seen a rapid accumulation of knowledge on the behavioral characteristics of zebrafish, and increased investigation into the neurobiological basis of behavior using zebrafish. This simple vertebrate represents an ideal compromise between system complexity and practical simplicity, with its mammalian sequence homology, fecundity, and conveniently small size and transparent embryology. Behavioral and Neural Genetics of Zebrafish assembles state of the art methodologies and the most current concepts pertinent to the neurobehavioral genetics of zebrafish. Discussing its natural behavior, motor function, and learning and memory, it focuses on the fry and adult zebrafish and features a comprehensive account of modern genetic and neural methods adapted to or specifically developed for Danio rerio. Numerous examples of how these behavioral methods may be utilized for disease models using the zebrafish will be presented, as well as a section on bioinformatics and "big-data" related questions. Focusing on this excellent translational tool, this book examines a species with which investigators may model and analyze even such complex human diseases as those associated with brain dysfunction. Provides the most comprehensive snapshot of the fast-evolving zebrafish neurobehavior genetics field Describes description of behavioral, genetic, and neural methods and concepts and adult and larval zebrafish Features examples of zebrafish models of human central nervous system disorders Discusses bioinformatics questions pertinent to zebrafish neurobehavioral genetics
Behavioral and Neural Genetics of Zebrafish assembles the state-of-the-art methodologies and current concepts pertinent to their neurobehavioral genetics. Discussing their natural behavior, motor function, learning and memory, this book focuses on the fry and adult zebrafish, featuring a comprehensive account of modern genetic and neural methods adapted to, or specifically developed for, Danio rerio. Numerous examples of how these behavioral methods may be utilized for disease models using the zebrafish are presented, as is a section on bioinformatics and "big-data" related questions. - Provides the most comprehensive snapshot of the fast-evolving zebrafish neurobehavior genetics field - Describes behavioral, genetic and neural methods and concepts for use in adult and larval zebrafish - Features examples of zebrafish models of human central nervous system disorders - Discusses bioinformatics questions pertinent to zebrafish neurobehavioral genetics
Molecular-Genetic and Statistical Techniques for Behavioral and Neural Research presents the most exciting molecular and recombinant DNA techniques used in the analysis of brain function and behavior, a critical piece of the puzzle for clinicians, scientists, course instructors and advanced undergraduate and graduate students. Chapters examine neuroinformatics, genetic and neurobehavioral databases and data mining, also providing an analysis of natural genetic variation and principles and applications of forward (mutagenesis) and reverse genetics (gene targeting). In addition, the book discusses gene expression and its role in brain function and behavior, along with ethical issues in the use of animals in genetics testing. Written and edited by leading international experts, this book provides a clear presentation of the frontiers of basic research as well as translationally relevant techniques that are used by neurobehavioral geneticists. - Focuses on new techniques, including electrocorticography, functional mapping, stereo EEG, motor evoked potentials, optical coherence tomography, magnetoencephalography, laser evoked potentials, transmagnetic stimulation, and motor evoked potentials - Presents the most exciting molecular and recombinant DNA techniques used in the analysis of brain function and behavior - Written and edited by leading international experts
Using the most well-studied behavioral analyses of animal subjects to promote a better understanding of the effects of disease and the effects of new therapeutic treatments on human cognition, Methods of Behavior Analysis in Neuroscience provides a reference manual for molecular and cellular research scientists in both academia and the pharmaceutic
Animal models have traditionally played a crucial role in improving our understanding of brain pathogenesis. Zebrafish (Danio rerio) have generated considerable discoveries in the areas of genetics, embryology, endocrinology, and neuroscience. Zebrafish Models in Neurobehavioral Research emphasizes the growing importance of zebrafish in neurobehavioral research and portrays an extensive, thorough perspective on the emergence of zebrafish as robust and translational models. Written by leading international experts, the book covers major topics ranging from stress to learned recognition of environment, encompassing a wide spectrum of the utility of zebrafish within neurobiological disciplines. The chapters provide authoritative reviews of many zebrafish paradigms commonly used in the field today. This book will be a useful guide for zebrafish researchers, and will complement another related book from the popular Neuromethods series, Zebrafish Neurobehavioral Protocols. Comprehensive and up-to-date, Zebrafish Models in Neurobehavioral Research serves as an ideal resource for scientists new to the field as well as for established researchers seeking valuable insight into the growing utility of zebrafish in neuroscience.
Scientific Frontiers in Developmental Toxicology and Risk Assessment reviews advances made during the last 10-15 years in fields such as developmental biology, molecular biology, and genetics. It describes a novel approach for how these advances might be used in combination with existing methodologies to further the understanding of mechanisms of developmental toxicity, to improve the assessment of chemicals for their ability to cause developmental toxicity, and to improve risk assessment for developmental defects. For example, based on the recent advances, even the smallest, simplest laboratory animals such as the fruit fly, roundworm, and zebrafish might be able to serve as developmental toxicological models for human biological systems. Use of such organisms might allow for rapid and inexpensive testing of large numbers of chemicals for their potential to cause developmental toxicity; presently, there are little or no developmental toxicity data available for the majority of natural and manufactured chemicals in use. This new approach to developmental toxicology and risk assessment will require simultaneous research on several fronts by experts from multiple scientific disciplines, including developmental toxicologists, developmental biologists, geneticists, epidemiologists, and biostatisticians.
The zebrafish (Danio rerio) is a valuable and common model for researchers working in the fields of genetics, oncology and developmental sciences. This full-color atlas will aid experimental design and interpretation in these areas by providing a fundamental understanding of zebrafish anatomy. Over 150 photomicrographs are included and can be used for direct comparison with histological slides, allowing quick and accurate identification of the anatomic structures of interest. Hematoxylin and eosin stained longitudinal and transverse sections demonstrate gross anatomic relationships and illustrate the microscopic anatomy of major organs. Unlike much of the current literature, this book is focused exclusively on the zebrafish, eliminating the need for researchers to exclude structures that are only found in other fish.
A home aquarium seems a peaceful place. Gazing at its inhabitants as they swim slowly through their small universe is a soothing, even hypnotic, experience. But this seeming tranquillity is only surface deep. Like their wild counterparts, these tiny, glittering beings exhibit a wide array of fascinating behaviors.Stéphan Reebs provides a delightfully entertaining, yet scientifically grounded, look at what fishes do and how they do it. From defending their young, to seeking out the perfect sexual partner, to telling time, fishes display a variety of behaviors that may not be readily apparent to the casual observer. Reebs not only describes the behaviors, but also outlines simple experiments that can be performed by observers wishing to learn for themselves just how resourceful—and bizarre—these creatures can be.How Fish Behave introduces us to damselfishes that sing like birds, elephantfishes that communicate electrically, and sticklebacks that deceive other fish into believing they have found food. Drawing on the experimental evidence behind such intrinsically interesting responses, Reebs demonstrates how science is conducted in the field of animal behavior.
Model Animals in Neuroendocrinology: From Worm to Mouse to Man offers a masterclass on the opportunities that different model animals offer to the basic understanding of neuroendocrine functions and mechanisms of action and the implications of this understanding. The authors review recent advances in the field emanating from studies involving a variety of animal models, molecular genetics, imaging technologies, and behavior assays. These studies helped unravel mechanisms underlying the development and function of neuroendocrine systems. The book highlights how studies in a variety of model animals, including, invertebrates, fish, birds, rodents and mammals has contributed to our understanding of neuroendocrinology. Model Animals in Neuroendocrinology provides students, scientists and practitioners with a contemporary account of what can be learnt about the functions of neuroendocrine systems from studies across animal taxonomy. This is the seventh volume in the Masterclass in Neuroendocrinology Series, a co-publication between Wiley and the INF (International Neuroendocrine Federation) that aims to illustrate highest standards and encourage the use of the latest technologies in basic and clinical research and hopes to provide inspiration for further exploration into the exciting field of neuroendocrinology.