Download Free Behavior Of Pipe Piles In Sand Book in PDF and EPUB Free Download. You can read online Behavior Of Pipe Piles In Sand and write the review.

One of the major difficulties in predicting the capacity of pipe piles in sand has resulted from a lack of understanding of the physical processes that control the behavior of piles during installation and loading. This monograph presents a detailed blue print for developing experimental facilities necessary to identify these processes. These facilities include a unique instrumented double-walled pipe-pile that is used to delineate the frictional stresses acting against the external and internal surfaces of the pile. The pile is fitted with miniature pore-pressure transducers to monitor the generation of pore water pressure during installation and loading. A fast automatic laboratory pile hammer capable of representing the phenomena that occur during pile driving was also developed and used.
One of the major difficulties in predicting the capacity of pipe piles in sand has resulted from a lack of understanding of the physical processes that control the behavior of piles during installation and loading. This monograph presents a detailed blue print for developing experimental facilities necessary to identify these processes. These facilities include a unique instrumented double-walled pipe-pile that is used to delineate the frictional stresses acting against the external and internal surfaces of the pile. The pile is fitted with miniature pore-pressure transducers to monitor the generation of pore water pressure during installation and loading. A fast automatic laboratory pile hammer capable of representing the phenomena that occur during pile driving was also developed and used.
Open-ended pipe piles are often used for the foundations of both land and offshore structures because of their relatively low driving resistance. In this study, calibration chamber tests were conducted on model pipe piles installed in sands with different soil conditions in order to investigate the effects of the pile installation method on penetration parameters and bearing capacity. Results of the test program showed that both the hammer blow count necessary to install the piles and the incremental filling ratio (IFR), which is used to indicate the degree of soil plugging in open-ended piles, decreased (1) with increasing hammer weight for the same driving energy, and (2) with increasing hammer weight at the same fall height. The base and shaft load capacities of the piles were observed to increase (1) with increasing hammer weight for the same driving energy, and (2) with increasing hammer weight for the same fall height. It was also observed that the noise level observed during pile driving decreases (1) as the driving energy decreases and (2) as the hammer weight increases for the same driving energy. Model jacked piles were also installed and tested. The jacked piles were found to have higher bearing capacities than identical driven piles under similar conditions, mostly due to the more effective development of soil plugging in jacking than in driving.
This book presents 09 keynote and invited lectures and 177 technical papers from the 4th International Conference on Geotechnics for Sustainable Infrastructure Development, held on 28-29 Nov 2019 in Hanoi, Vietnam. The papers come from 35 countries of the five different continents, and are grouped in six conference themes: 1) Deep Foundations; 2) Tunnelling and Underground Spaces; 3) Ground Improvement; 4) Landslide and Erosion; 5) Geotechnical Modelling and Monitoring; and 6) Coastal Foundation Engineering. The keynote lectures are devoted by Prof. Harry Poulos (Australia), Prof. Adam Bezuijen (Belgium), Prof. Delwyn Fredlund (Canada), Prof. Lidija Zdravkovic (UK), Prof. Masaki Kitazume (Japan), and Prof. Mark Randolph (Australia). Four invited lectures are given by Prof. Charles Ng, ISSMGE President, Prof.Eun Chul Shin, ISSMGE Vice-President for Asia, Prof. Norikazu Shimizu (Japan), and Dr.Kenji Mori (Japan).