Download Free Bayesian Multiple Target Tracking Book in PDF and EPUB Free Download. You can read online Bayesian Multiple Target Tracking and write the review.

This second edition has undergone substantial revision from the 1999 first edition, recognizing that a lot has changed in the multiple target tracking field. One of the most dramatic changes is in the widespread use of particle filters to implement nonlinear, non-Gaussian Bayesian trackers. This book views multiple target tracking as a Bayesian inference problem. Within this framework it develops the theory of single target tracking, multiple target tracking, and likelihood ratio detection and tracking. In addition to providing a detailed description of a basic particle filter that implements the Bayesian single target recursion, this resource provides numerous examples that involve the use of particle filters. With these examples illustrating the developed concepts, algorithms, and approaches -- the book helps radar engineers develop tracking solutions when observations are non-linear functions of target state, when the target state distributions or measurement error distributions are not Gaussian, in low data rate and low signal to noise ratio situations, and when notions of contact and association are merged or unresolved among more than one target.
The monograph written by John Mullane, Ba-Ngu Vo, Martin Adams and Ba-Tuong Vo is devoted to the field of autonomous robot systems, which have been receiving a great deal of attention by the research community in the latest few years. The contents are focused on the problem of representing the environment and its uncertainty in terms of feature based maps. Random Finite Sets are adopted as the fundamental tool to represent a map, and a general framework is proposed for feature management, data association and state estimation. The approaches are tested in a number of experiments on both ground based and marine based facilities.
The conference provides a medium to discuss advances and applications of fusion and integration methodologies The conference will include contributions in the areas of theory, sensors, algorithms, and applications
​The book shows that the analytic combinatorics (AC) method encodes the combinatorial problems of multiple object tracking—without information loss—into the derivatives of a generating function (GF). The book lays out an easy-to-follow path from theory to practice and includes salient AC application examples. Since GFs are not widely utilized amongst the tracking community, the book takes the reader from the basics of the subject to applications of theory starting from the simplest problem of single object tracking, and advancing chapter by chapter to more challenging multi-object tracking problems. Many established tracking filters (e.g., Bayes-Markov, PDA, JPDA, IPDA, JIPDA, CPHD, PHD, multi-Bernoulli, MBM, LMBM, and MHT) are derived in this manner with simplicity, economy, and considerable clarity. The AC method gives significant and fresh insights into the modeling assumptions of these filters and, thereby, also shows the potential utility of various approximation methods that are well established techniques in applied mathematics and physics, but are new to tracking. These unexplored possibilities are reviewed in the final chapter of the book.
The first comprehensive development of Bayesian Bounds for parameter estimation and nonlinear filtering/tracking Bayesian estimation plays a central role in many signal processing problems encountered in radar, sonar, communications, seismology, and medical diagnosis. There are often highly nonlinear problems for which analytic evaluation of the exact performance is intractable. A widely used technique is to find bounds on the performance of any estimator and compare the performance of various estimators to these bounds. This book provides a comprehensive overview of the state of the art in Bayesian Bounds. It addresses two related problems: the estimation of multiple parameters based on noisy measurements and the estimation of random processes, either continuous or discrete, based on noisy measurements. An extensive introductory chapter provides an overview of Bayesian estimation and the interrelationship and applicability of the various Bayesian Bounds for both static parameters and random processes. It provides the context for the collection of papers that are included. This book will serve as a comprehensive reference for engineers and statisticians interested in both theory and application. It is also suitable as a text for a graduate seminar or as a supplementary reference for an estimation theory course.
This IMA Volume in Mathematics and its Applications RANDOM SETS: THEORY AND APPLICATIONS is based on the proceedings of a very successful 1996 three-day Summer Program on "Application and Theory of Random Sets." We would like to thank the scientific organizers: John Goutsias (Johns Hopkins University), Ronald P.S. Mahler (Lockheed Martin), and Hung T. Nguyen (New Mexico State University) for their excellent work as organizers of the meeting and for editing the proceedings. We also take this opportunity to thank the Army Research Office (ARO), the Office ofNaval Research (0NR), and the Eagan, MinnesotaEngineering Center ofLockheed Martin Tactical Defense Systems, whose financial support made the summer program possible. Avner Friedman Robert Gulliver v PREFACE "Later generations will regard set theory as a disease from which one has recovered. " - Henri Poincare Random set theory was independently conceived by D.G. Kendall and G. Matheron in connection with stochastic geometry. It was however G.
Introduces object tracking algorithms from a unified, recursive Bayesian perspective, along with performance bounds and illustrative examples.
A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.