Download Free Basic Research In Agriculture Book in PDF and EPUB Free Download. You can read online Basic Research In Agriculture and write the review.

Authored by an integrated committee of plant and animal scientists, this review of newer molecular genetic techniques and traditional research methods is presented as a compilation of high-reward opportunities for agricultural research. Directed to the Agricultural Research Service and the agricultural research community at large, the volume discusses biosciences research in genetic engineering, animal science, plant science, and plant diseases and insect pests. An optimal climate for productive research is discussed.
Interest is growing in sustainable agriculture, which involves the use of productive and profitable farming practices that take advantage of natural biological processes to conserve resources, reduce inputs, protect the environment, and enhance public health. Continuing research is helping to demonstrate the ways that many factorsâ€"economics, biology, policy, and traditionâ€"interact in sustainable agriculture systems. This book contains the proceedings of a workshop on the findings of a broad range of research projects funded by the U.S. Department of Agriculture. The areas of study, such as integrated pest management, alternative cropping and tillage systems, and comparisons with more conventional approaches, are essential to developing and adopting profitable and sustainable farming systems.
For nearly a century, scientific advances have fueled progress in U.S. agriculture to enable American producers to deliver safe and abundant food domestically and provide a trade surplus in bulk and high-value agricultural commodities and foods. Today, the U.S. food and agricultural enterprise faces formidable challenges that will test its long-term sustainability, competitiveness, and resilience. On its current path, future productivity in the U.S. agricultural system is likely to come with trade-offs. The success of agriculture is tied to natural systems, and these systems are showing signs of stress, even more so with the change in climate. More than a third of the food produced is unconsumed, an unacceptable loss of food and nutrients at a time of heightened global food demand. Increased food animal production to meet greater demand will generate more greenhouse gas emissions and excess animal waste. The U.S. food supply is generally secure, but is not immune to the costly and deadly shocks of continuing outbreaks of food-borne illness or to the constant threat of pests and pathogens to crops, livestock, and poultry. U.S. farmers and producers are at the front lines and will need more tools to manage the pressures they face. Science Breakthroughs to Advance Food and Agricultural Research by 2030 identifies innovative, emerging scientific advances for making the U.S. food and agricultural system more efficient, resilient, and sustainable. This report explores the availability of relatively new scientific developments across all disciplines that could accelerate progress toward these goals. It identifies the most promising scientific breakthroughs that could have the greatest positive impact on food and agriculture, and that are possible to achieve in the next decade (by 2030).
Here in one easy-to-understand volume are the statistical procedures and techniques the agricultural researcher needs to know in order to design, implement, analyze, and interpret the results of most experiments with crops. Designed specifically for the non-statistician, this valuable guide focuses on the practical problems of the field researcher. Throughout, it emphasizes the use of statistics as a tool of research—one that will help pinpoint research problems and select remedial measures. Whenever possible, mathematical formulations and statistical jargon are avoided. Originally published by the International Rice Research Institute, this widely respected guide has been totally updated and much expanded in this Second Edition. It now features new chapters on the analysis of multi-observation data and experiments conducted over time and space. Also included is a chapter on experiments in farmers' fields, a subject of major concern in developing countries where agricultural research is commonly conducted outside experiment stations. Statistical Procedures for Agricultural Research, Second Edition will prove equally useful to students and professional researchers in all agricultural and biological disciplines. A wealth of examples of actual experiments help readers to choose the statistical method best suited for their needs, and enable even the most complicated procedures to be easily understood and directly applied. An International Rice Research Institute Book
By 2050 the world's population is projected to grow by one-third, reaching between 9 and 10 billion. With globalization and expected growth in global affluence, a substantial increase in per capita meat, dairy, and fish consumption is also anticipated. The demand for calories from animal products will nearly double, highlighting the critical importance of the world's animal agriculture system. Meeting the nutritional needs of this population and its demand for animal products will require a significant investment of resources as well as policy changes that are supportive of agricultural production. Ensuring sustainable agricultural growth will be essential to addressing this global challenge to food security. Critical Role of Animal Science Research in Food Security and Sustainability identifies areas of research and development, technology, and resource needs for research in the field of animal agriculture, both nationally and internationally. This report assesses the global demand for products of animal origin in 2050 within the framework of ensuring global food security; evaluates how climate change and natural resource constraints may impact the ability to meet future global demand for animal products in sustainable production systems; and identifies factors that may impact the ability of the United States to meet demand for animal products, including the need for trained human capital, product safety and quality, and effective communication and adoption of new knowledge, information, and technologies. The agricultural sector worldwide faces numerous daunting challenges that will require innovations, new technologies, and new ways of approaching agriculture if the food, feed, and fiber needs of the global population are to be met. The recommendations of Critical Role of Animal Science Research in Food Security and Sustainability will inform a new roadmap for animal science research to meet the challenges of sustainable animal production in the 21st century.
The classic case for why government must support science—with a new essay by physicist and former congressman Rush Holt on what democracy needs from science today Science, the Endless Frontier is recognized as the landmark argument for the essential role of science in society and government’s responsibility to support scientific endeavors. First issued when Vannevar Bush was the director of the US Office of Scientific Research and Development during the Second World War, this classic remains vital in making the case that scientific progress is necessary to a nation’s health, security, and prosperity. Bush’s vision set the course for US science policy for more than half a century, building the world’s most productive scientific enterprise. Today, amid a changing funding landscape and challenges to science’s very credibility, Science, the Endless Frontier resonates as a powerful reminder that scientific progress and public well-being alike depend on the successful symbiosis between science and government. This timely new edition presents this iconic text alongside a new companion essay from scientist and former congressman Rush Holt, who offers a brief introduction and consideration of what society needs most from science now. Reflecting on the report’s legacy and relevance along with its limitations, Holt contends that the public’s ability to cope with today’s issues—such as public health, the changing climate and environment, and challenging technologies in modern society—requires a more capacious understanding of what science can contribute. Holt considers how scientists should think of their obligation to society and what the public should demand from science, and he calls for a renewed understanding of science’s value for democracy and society at large. A touchstone for concerned citizens, scientists, and policymakers, Science, the Endless Frontier endures as a passionate articulation of the power and potential of science.
Science, Medicine, and Animals explains the role that animals play in biomedical research and the ways in which scientists, governments, and citizens have tried to balance the experimental use of animals with a concern for all living creatures. An accompanying Teacher's Guide is available to help teachers of middle and high school students use Science, Medicine, and Animals in the classroom. As students examine the issues in Science, Medicine, and Animals, they will gain a greater understanding of the goals of biomedical research and the real-world practice of the scientific method in general. Science, Medicine, and Animals and the Teacher's Guide were written by the Institute for Laboratory Animal Research and published by the National Research Council of the National Academies. The report was reviewed by a committee made up of experts and scholars with diverse perspectives, including members of the U.S. Department of Agriculture, National Institutes of Health, the Humane Society of the United States, and the American Society for the Prevention of Cruelty to Animals. The Teacher's Guide was reviewed by members of the National Academies' Teacher Associates Network. Science, Medicine, and Animals is recommended by the National Science Teacher's Association NSTA Recommends.
This new, fully revised edition aims to serve as a guide for agricultural research scientists and other practitioners in writing papers for publication. It also looks to provide a resource manual for training courses in scientific writing. There are three new chapters on reporting statistical results, communicating science to non-scientific audiences and electronic publishing. In addition, the original chapters have all been rewritten to reflect current developments and to make the content more complete and easily comprehensible.