Download Free Basic Mathematical Programming Theory Book in PDF and EPUB Free Download. You can read online Basic Mathematical Programming Theory and write the review.

This edited book presents recent developments and state-of-the-art review in various areas of mathematical programming and game theory. It is a peer-reviewed research monograph under the ISI Platinum Jubilee Series on Statistical Science and Interdisciplinary Research. This volume provides a panoramic view of theory and the applications of the methods of mathematical programming to problems in statistics, finance, games and electrical networks. It also provides an important as well as timely overview of research trends and focuses on the exciting areas like support vector machines, bilevel programming, interior point method for convex quadratic programming, cooperative games, non-cooperative games and stochastic games. Researchers, professionals and advanced graduates will find the book an essential resource for current work in mathematical programming, game theory and their applications. Sample Chapter(s). Foreword (45 KB). Chapter 1: Mathematical Programming and its Applications in Finance (177 KB). Contents: Mathematical Programming and Its Applications in Finance (L C Thomas); Anti-Stalling Pivot Rule for Linear Programs with Totally Unimodular Coefficient Matrix (S N Kabadi & A P Punnen); A New Practically Efficient Interior Point Method for Convex Quadratic Programming (K G Murty); A General Framework for the Analysis of Sets of Constraints (R Caron & T Traynor), Tolerance-Based Algorithms for the Traveling Salesman Problem (D Ghosh et al.); On the Membership Problem of the Pedigree Polytope (T S Arthanari); Exact Algorithms for a One-Defective Vertex Colouring Problem (N Achuthan et al.); Complementarity Problem Involving a Vertical Block Matrix and Its Solution Using Neural Network Model (S K Neogy et al.); Fuzzy Twin Support Vector Machines for Pattern Classification (R Khemchandani et al.); An Overview of the Minimum Sum of Absolute Errors Regression (S C Narula & J F Wellington); Hedging Against the Market with No Short Selling (S A Clark & C Srinivasan); Mathematical Programming and Electrical Network Analysis II: Computational Linear Algebra Through Network Analysis (H Narayanan); Dynamic Optimal Control Policy in Price and Quality for High Technology Product (A K Bardhan & U Chanda); Forecasting for Supply Chain and Portfolio Management (K G Murty); Variational Analysis in Bilevel Programming (S Dempe et al.); Game Engineering (R J Aumann); Games of Connectivity (P Dubey & R Garg); A Robust Feedback Nash Equilibrium in a Climate Change Policy Game (M Hennlock); De Facto Delegation and Proposer Rules (H Imai & K Yonezaki); The Bargaining Set in Effectivity Function (D Razafimahatolotra); Dynamic Oligopoly as a Mixed Large Game OCo Toy Market (A Wiszniewska-Matyszkiel); On Some Classes of Balanced Games (R B Bapat); Market Equilibrium for Combinatorial Auctions and the Matching Core of Nonnegative TU Games (S Lahiri); Continuity, Manifolds, and Arrow''s Social Choice Problem (K Saukkonen); On a Mixture Class of Stochastic Games with Ordered Field Property (S K Neogy). Readership: Researchers, professionals and advanced students in mathematical programming, game theory, management sciences and computational mathematics.
Mathematical Programming, a branch of Operations Research, is perhaps the most efficient technique in making optimal decisions. It has a very wide application in the analysis of management problems, in business and industry, in economic studies, in military problems and in many other fields of our present day activities. In this keen competetive world, the problems are getting more and more complicated ahnd efforts are being made to deal with these challenging problems. This book presents from the origin to the recent developments in mathematical programming. The book has wide coverage and is self-contained. It is suitable both as a text and as a reference.* A wide ranging all encompasing overview of mathematical programming from its origins to recent developments* A result of over thirty years of teaching experience in this feild* A self-contained guide suitable both as a text and as a reference
This comprehensive work covers the whole field of mathematical programming, including linear programming, unconstrained and constrained nonlinear programming, nondifferentiable (or nonsmooth) optimization, integer programming, large scale systems optimization, dynamic programming, and optimization in infinite dimensions. Special emphasis is placed on unifying concepts such as point-to-set maps, saddle points and perturbations functions, duality theory and its extensions.
Algorithmic Principles of Mathematical Programming investigates the mathematical structures and principles underlying the design of efficient algorithms for optimization problems. Recent advances in algorithmic theory have shown that the traditionally separate areas of discrete optimization, linear programming, and nonlinear optimization are closely linked. This book offers a comprehensive introduction to the whole subject and leads the reader to the frontiers of current research. The prerequisites to use the book are very elementary. All the tools from numerical linear algebra and calculus are fully reviewed and developed. Rather than attempting to be encyclopedic, the book illustrates the important basic techniques with typical problems. The focus is on efficient algorithms with respect to practical usefulness. Algorithmic complexity theory is presented with the goal of helping the reader understand the concepts without having to become a theoretical specialist. Further theory is outlined and supplemented with pointers to the relevant literature. The book is equally suited for self-study for a motivated beginner and for a comprehensive course on the principles of mathematical programming within an applied mathematics or computer science curriculum at advanced undergraduate or graduate level. The presentation of the material is such that smaller modules on discrete optimization, linear programming, and nonlinear optimization can easily be extracted separately and used for shorter specialized courses on these subjects.
Mathematical programming: an overview; solving linear programs; sensitivity analysis; duality in linear programming; mathematical programming in practice; integration of strategic and tactical planning in the aluminum industry; planning the mission and composition of the U.S. merchant Marine fleet; network models; integer programming; design of a naval tender job shop; dynamic programming; large-scale systems; nonlinear programming; a system for bank portfolio planning; vectors and matrices; linear programming in matrix form; a labeling algorithm for the maximun-flow network problem.
Setting out to bridge the gap between the theory of mathematical programming and the varied, real-world practices of industrial engineers, this work introduces developments in linear, integer, multiobjective, stochastic, network and dynamic programing. It details many relevant industrial-engineering applications.;College or university bookstores may order five or more copies at a special student price, available upon request from Marcel Dekker, Inc.
The subject of (static) optimization, also called mathematical programming, is one of the most important and widespread branches of modern mathematics, serving as a cornerstone of such scientific subjects as economic analysis, operations research, management sciences, engineering, chemistry, physics, statistics, computer science, biology, and social sciences. This book presents a unified, progressive treatment of the basic mathematical tools of mathematical programming theory. The authors expose said tools, along with results concerning the most common mathematical programming problems formulated in a finite-dimensional setting, forming the basis for further study of the basic questions on the various algorithmic methods and the most important particular applications of mathematical programming problems. This book assumes no previous experience in optimization theory, and the treatment of the various topics is largely self-contained. Prerequisites are the basic tools of differential calculus for functions of several variables, the basic notions of topology and of linear algebra, and the basic mathematical notions and theoretical background used in analyzing optimization problems. The book is aimed at both undergraduate and postgraduate students interested in mathematical programming problems but also those professionals who use optimization methods and wish to learn the more theoretical aspects of these questions.
A classic account of mathematical programming and control techniques and their applications to static and dynamic problems in economics.
This book provides basic tools for learning how to model in mathematical programming, from models without much complexity to complex system models. It presents a unique methodology for the building of an integral mathematical model, as well as new techniques that help build under own criteria. It allows readers to structure models from the elements and variables to the constraints, a basic modelling guide for any system with a new scheme of variables, a classification of constraints and also a set of rules to model specifications stated as logical propositions, helping to better understand models already existing in the literature. It also presents the modelling of all possible objectives that may arise in optimization problems regarding the variables values. The book is structured to guide the reader in an orderly manner, learning of the components that the methodology establishes in an optimization problem. The system includes the elements, which are all the actors that participate in the system, decision activities that occur in the system, calculations based on the decision activities, specifications such as regulations, impositions or actions of defined value and objective criterion, which guides the resolution of the system.
Praise for the Second Edition: "This is quite a well-done book: very tightly organized, better-than-average exposition, and numerous examples, illustrations, and applications." —Mathematical Reviews of the American Mathematical Society An Introduction to Linear Programming and Game Theory, Third Edition presents a rigorous, yet accessible, introduction to the theoretical concepts and computational techniques of linear programming and game theory. Now with more extensive modeling exercises and detailed integer programming examples, this book uniquely illustrates how mathematics can be used in real-world applications in the social, life, and managerial sciences, providing readers with the opportunity to develop and apply their analytical abilities when solving realistic problems. This Third Edition addresses various new topics and improvements in the field of mathematical programming, and it also presents two software programs, LP Assistant and the Solver add-in for Microsoft Office Excel, for solving linear programming problems. LP Assistant, developed by coauthor Gerard Keough, allows readers to perform the basic steps of the algorithms provided in the book and is freely available via the book's related Web site. The use of the sensitivity analysis report and integer programming algorithm from the Solver add-in for Microsoft Office Excel is introduced so readers can solve the book's linear and integer programming problems. A detailed appendix contains instructions for the use of both applications. Additional features of the Third Edition include: A discussion of sensitivity analysis for the two-variable problem, along with new examples demonstrating integer programming, non-linear programming, and make vs. buy models Revised proofs and a discussion on the relevance and solution of the dual problem A section on developing an example in Data Envelopment Analysis An outline of the proof of John Nash's theorem on the existence of equilibrium strategy pairs for non-cooperative, non-zero-sum games Providing a complete mathematical development of all presented concepts and examples, Introduction to Linear Programming and Game Theory, Third Edition is an ideal text for linear programming and mathematical modeling courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for professionals who use game theory in business, economics, and management science.