Download Free Basic Concepts For Simple And Complex Liquids Book in PDF and EPUB Free Download. You can read online Basic Concepts For Simple And Complex Liquids and write the review.

Presenting a unified approach, this book focusses on the concepts and theoretical methods that are necessary for an understanding of the physics and chemistry of the fluid state. The authors do not attempt to cover the whole field in an encyclopedic manner. Instead, important ideas are presented in a concise and rigorous style, and illustrated with examples from both simple molecular liquids and more complex soft condensed matter systems such as polymers, colloids, and liquid crystals.
Presenting a unified approach, this book focuses on the theoretical concepts and methods necessary for understanding the physics and chemistry of the fluid state. Important ideas are presented concisely and illustrated with examples from simple molecular liquids and more complex soft condensed matter systems such as polymers, colloids, and liquid crystals.
This book gives a comprehensive and up-to-date treatment of the theory of "simple" liquids. The new second edition has been rearranged and considerably expanded to give a balanced account both of basic theory and of the advances of the past decade. It presents the main ideas of modern liquid state theory in a way that is both pedagogical and self-contained. The book should be accessible to graduate students and research workers, both experimentalists and theorists, who have a good background in elementary mechanics. - Compares theoretical deductions with experimental results - Molecular dynamics - Monte Carlo computations - Covers ionic, metallic, and molecular liquids
The Structure and Rheology of Complex Fluids describes the microstructures of polymeric, colloidal, amphiphilic, and liquid crystalline liquids, and the relationship between microstructure and mechanical and flow properties. It provides illustrations, practical examples, and worked problems. This book can serve as both a textbook for a graduate course and a research monograph.
Of the three basic states of matter, liquid is perhaps the most complex. While its flow properties are described by fluid mechanics, its thermodynamic properties are often neglected, and for many years it was widely believed that a general theory of liquid thermodynamics was unattainable. In recent decades that view has been challenged, as new advances have finally enabled us to understand and describe the thermodynamic properties of liquids. This book explains the recent developments in theory, experiment and modelling that have enabled us to understand the behaviour of excitations in liquids and the impact of this behaviour on heat capacity and other basic properties. Presented in plain language with a focus on real liquids and their experimental properties, this book is a useful reference text for researchers and graduate students in condensed matter physics and chemistry as well as for advanced courses covering the theory of liquids.
This book, provides a general introduction to the ideas and methods of statistical mechanics with the principal aim of meeting the needs of Master’s students in chemical, mechanical, and materials science engineering. Extensive introductory information is presented on many general physics topics in which students in engineering are inadequately trained, ranging from the Hamiltonian formulation of classical mechanics to basic quantum mechanics, electromagnetic fields in matter, intermolecular forces, and transport phenomena. Since engineers should be able to apply physical concepts, the book also focuses on the practical applications of statistical physics to material science and to cutting-edge technologies, with brief but informative sections on, for example, interfacial properties, disperse systems, nucleation, magnetic materials, superfluidity, and ultralow temperature technologies. The book adopts a graded approach to learning, the opening four basic-level chapters being followed by advanced “starred” sections in which special topics are discussed. Its relatively informal style, including the use of musical metaphors to guide the reader through the text, will aid self-learning.
The theory of simple and complex fluids has made considerable recent progress, due to the emergence of new concepts and theoretical tools, and also to the availability of a large body of new experimental data on increas ingly complex systems, as well as far-reaching methodological developments in numerical simulations. This AS! aimed at providing a comprehensive overview of the most significant theoretical developments, supplemented by a few presentations of cutting-edge simulation and experimental work. The impact of the Institute in the overall landscape of Statistical Mechanics received an important recognition with its inclusion in the list of satellite events of STATPHYS20, the triennal international conference on Statistical Physics held in Paris in July 1998. These Proceedings contain the texts of the 13 Lecture Courses and 9 Invited Seminars delivered at Patti. Two clear trends emerge from these Proceedings: first, the diversity of new and unexpected theoretical results relating to classic models of liq uids, which have recently been subjected to fresh scrutiny; and secondly the parallel emergence of new concepts, models and methods, aimed at investigating complex fluids and phenomena, like the phase behaviour of fluids in pores, macromolecular assemblies, and the glass transition. Many of the new tools have their roots in traditional liquid state theory, and, in conjunction with fresh input from related fields, allow it wider applicability.
Liquid crystals are partially ordered systems without a rigid, long-range structure. The study of these materials covers a wide area: chemical structure, physical properties and technical applications. Due to their dual nature -- anisotropic physical properties of solids and rheological behavior of liquids -- and easy response to externally applied electric, magnetic, optical and surface fields liquid crystals are of greatest potential for scientific and technological applications. The subject has come of age and has achieved the status of being a very exciting interdisciplinary field of scientific and industrial research. This book is an outgrowth of the enormous advances made during the last three decades in both our understanding of liquid crystals and our ability to use them in applications. It presents a systematic, self-contained and up-to-date overview of the structure and properties of liquid crystals. It will be of great value to graduates and research workers in condensed matter physics, chemical physics, biology, materials science, chemical and electrical engineering, and technology from a materials science and physics viewpoint of liquid crystals.
The surprising connections which have developed between physics and various fields as diverse as biology and economics now constitute the fascinating research area known as complex materials and systems. The study of complex materials and processes is rapidly expanding, and many important experimental and theoretical discoveries have been made in recent years. Statistical physics is key to exploring this new and expanding field, enabling an understanding of real-world phenomena compromised of complex materials or exhibiting complex processes. This book includes lectures presented at the CLXXVI International School of Physics “Enrico Fermi”, held in Varenna, Italy, in July 2010. The school focused on recent advances and developing perspectives in the study of complex materials and processes, as related to physics and biology. The book provides both an introduction and a complete presentation of recent theoretical and experimental developments for each topic. Topics addressed include: scaling and universality, supra-molecular systems and solutions, polymer systems, static and dynamics of liquid water, arrested dynamics and jamming, dynamics of out of equilibrium systems, physics of confined liquids, granular matter, physics of biological and medical systems, networks in physical and social sciences, turbulence in physics, biology and economics and finally, switching phenomena in biology and economics. The book provides reviews of these cutting edge topics by leading authorities and will be a reference work useful to both advanced research professionals and beginning graduate students.