Download Free Bad Data Book in PDF and EPUB Free Download. You can read online Bad Data and write the review.

Highlights the pitfalls of data analysis and emphasizes the importance of using the appropriate metrics before making key decisions.Big data is often touted as the key to understanding almost every aspect of contemporary life. This critique of "information hubris" shows that even more important than data is finding the right metrics to evaluate it.The author, an expert in environmental design and city planning, examines the many ways in which we measure ourselves and our world. He dissects the metrics we apply to health, worker productivity, our children's education, the quality of our environment, the effectiveness of leaders, the dynamics of the economy, and the overall well-being of the planet. Among the areas where the wrong metrics have led to poor outcomes, he cites the fee-for-service model of health care, corporate cultures that emphasize time spent on the job while overlooking key productivity measures, overreliance on standardized testing in education to the detriment of authentic learning, and a blinkered focus on carbon emissions, which underestimates the impact of industrial damage to our natural world. He also examines various communities and systems that have achieved better outcomes by adjusting the ways in which they measure data. The best results are attained by those that have learned not only what to measure and how to measure it, but what it all means. By highlighting the pitfalls inherent in data analysis, this illuminating book reminds us that not everything that can be counted really counts.
What is bad data? Some people consider it a technical phenomenon, like missing values or malformed records, but bad data includes a lot more. In this handbook, data expert Q. Ethan McCallum has gathered 19 colleagues from every corner of the data arena to reveal how they’ve recovered from nasty data problems. From cranky storage to poor representation to misguided policy, there are many paths to bad data. Bottom line? Bad data is data that gets in the way. This book explains effective ways to get around it. Among the many topics covered, you’ll discover how to: Test drive your data to see if it’s ready for analysis Work spreadsheet data into a usable form Handle encoding problems that lurk in text data Develop a successful web-scraping effort Use NLP tools to reveal the real sentiment of online reviews Address cloud computing issues that can impact your analysis effort Avoid policies that create data analysis roadblocks Take a systematic approach to data quality analysis
This monograph is a contribution to the study of the identification problem: the problem of identifying an item from a known class us ing positive and negative examples. This problem is considered to be an important component of the process of inductive learning, and as such has been studied extensively. In the overview we shall explain the objectives of this work and its place in the overall fabric of learning research. Context. Learning occurs in many forms; the only form we are treat ing here is inductive learning, roughly characterized as the process of forming general concepts from specific examples. Computer Science has found three basic approaches to this problem: • Select a specific learning task, possibly part of a larger task, and construct a computer program to solve that task . • Study cognitive models of learning in humans and extrapolate from them general principles to explain learning behavior. Then construct machine programs to test and illustrate these models. xi Xll PREFACE • Formulate a mathematical theory to capture key features of the induction process. This work belongs to the third category. The various studies of learning utilize training examples (data) in different ways. The three principal ones are: • Similarity-based (or empirical) learning, in which a collection of examples is used to select an explanation from a class of possible rules.
Scientific progress depends on good research, and good research needs good statistics. But statistical analysis is tricky to get right, even for the best and brightest of us. You'd be surprised how many scientists are doing it wrong. Statistics Done Wrong is a pithy, essential guide to statistical blunders in modern science that will show you how to keep your research blunder-free. You'll examine embarrassing errors and omissions in recent research, learn about the misconceptions and scientific politics that allow these mistakes to happen, and begin your quest to reform the way you and your peers do statistics. You'll find advice on: –Asking the right question, designing the right experiment, choosing the right statistical analysis, and sticking to the plan –How to think about p values, significance, insignificance, confidence intervals, and regression –Choosing the right sample size and avoiding false positives –Reporting your analysis and publishing your data and source code –Procedures to follow, precautions to take, and analytical software that can help Scientists: Read this concise, powerful guide to help you produce statistically sound research. Statisticians: Give this book to everyone you know. The first step toward statistics done right is Statistics Done Wrong.
"Covering both data architecture and data management issues, the book describes the impact of poor data practices, demonstrates more effective approaches, and reveals implementation pointers for quick results."--Jacket.
Crest the data wave with a deep cultural shift Winning with Data explores the cultural changes big data brings to business, and shows you how to adapt your organization to leverage data to maximum effect. Authors Tomasz Tunguz and Frank Bien draw on extensive background in big data, business intelligence, and business strategy to provide a blueprint for companies looking to move head-on into the data wave. Instrumentation is discussed in detail, but the core of the change is in the culture—this book provides sound guidance on building the type of organizational culture that creates and leverages data daily, in every aspect of the business. Real-world examples illustrate these important concepts at work: you'll learn how data helped Warby-Parker disrupt a $13 billion monopolized market, how ThredUp uses data to process more than 20 thousand items of clothing every day, how Venmo leverages data to build better products, how HubSpot empowers their salespeople to be more productive, and more. From decision making and strategy to shipping and sales, this book shows you how data makes better business. Big data has taken on buzzword status, but there is little real guidance for companies seeking everyday business data solutions. This book takes a deeper look at big data in business, and shows you how to shift internal culture ahead of the curve. Understand the changes a data culture brings to companies Instrument your company for maximum benefit Utilize data to optimize every aspect of your business Improve decision making and transform business strategy Big data is becoming the number-one topic in business, yet no one is asking the right questions. Leveraging the full power of data requires more than good IT—organization-wide buy-in is essential for long-term success. Winning with Data is the expert guide to making data work for your business, and your needs.
An entertaining introductory guide to conducting qualitative data analysis in comic book format, following the character of Shane the Lone Ethnographer.
“This is not the kind of book that you’ll read one time and be done with. So scan it quickly the first time through to get an idea of its breadth. Then dig in on one topic of special importance to your work. Finally, use it as a reference to guide your next steps, learn details, and broaden your perspective.” from the foreword by Thomas C. Redman, Ph.D., “the Data Doc” Good data is a source of myriad opportunities, while bad data is a tremendous burden. Companies that manage their data effectively are able to achieve a competitive advantage in the marketplace, while bad data, like cancer, can weaken and kill an organization. In this comprehensive book, Rupa Mahanti provides guidance on the different aspects of data quality with the aim to be able to improve data quality. Specifically, the book addresses: -Causes of bad data quality, bad data quality impacts, and importance of data quality to justify the case for data quality-Butterfly effect of data quality-A detailed description of data quality dimensions and their measurement-Data quality strategy approach-Six Sigma - DMAIC approach to data quality-Data quality management techniques-Data quality in relation to data initiatives like data migration, MDM, data governance, etc.-Data quality myths, challenges, and critical success factorsStudents, academicians, professionals, and researchers can all use the content in this book to further their knowledge and get guidance on their own specific projects. It balances technical details (for example, SQL statements, relational database components, data quality dimensions measurements) and higher-level qualitative discussions (cost of data quality, data quality strategy, data quality maturity, the case made for data quality, and so on) with case studies, illustrations, and real-world examples throughout.
State estimation is one of the most important functions in power system operation and control. This area is concerned with the overall monitoring, control, and contingency evaluation of power systems. It is mainly aimed at providing a reliable estimate of system voltages. State estimator information flows to control centers, where critical decisions are made concerning power system design and operations. This valuable resource provides thorough coverage of this area, helping professionals overcome challenges involving system quality, reliability, security, stability, and economy. Engineers are introduced to new techniques for their work in the field, including current measurements and phasor measurement units. Moreover, the book includes a novel discussion on state estimation for distributed systems. Professionals find expert guidance for their current projects and discover cutting-edge developments that will help prepare them for work with future energy management systems.
Provides an up-to-date review of the latest developments in system reliability maintenance, fault detection and fault-tolerant design techniques. Topics covered include reliability analysis and optimization, maintenance control policies, fault detection techniques, fault-tolerant systems, reliable controllers and robustness, knowledge based approaches and decision support systems. There are further applications papers on process control, robotics, manufacturing systems, communications and power systems. Contains 36 papers.