Download Free Bacterial Metabolites In Sustainable Agroecosystem Book in PDF and EPUB Free Download. You can read online Bacterial Metabolites In Sustainable Agroecosystem and write the review.

There has been a resurgence of interest in environmental friendly, sustainable and organic cultural practices that warrants high yield and quality in agricultural crops. To enhance sustainable agricultural production and alleviate food scarcity, spoor of majority of microorganisms, especially plant growth and health promoting bacteria of eminent characteristics that allow them for exploitation in agro-ecosystem. Plant growth promoting rhizobacteria are the soil bacteria inhabiting around/on the root surface and are directly or indirectly involved in promoting plant growth and development via production and secretion of various regulatory chemicals in the vicinity of rhizosphere. Among various beneficial bacteria mediated mechanisms include direct production of phytohormones and biosurfactants experiencing quest of research and concept up gradation that can built emerging paradigm (agriculture model). Research on bacteria-mediated phytohormones is crucially important, provides key understanding of the plant growth and development. Various genera including PGPR group of bacteria are potential source of plant growth regulators. Application of such organism allow plants to survive under abiotic and biotic stress conditions besides govern phytohormone mediated immune response and manage to regulate hormones. Such group of bacteria also produce another important metabolite i.e. biosurfacatants which are involved in many important functions to bacteria itself as we ll as for the plants and their ecosystem. Biosurfactants may alter nutrient availability, endogenous metabolites such as antibiotics production, root colonization imparting protection from phytopathogens besides eradicating soil contaminants and other pollutants. The role and activities of surfactants produced by bacteria are multifarious in nature. Thus, bacterial phytohormones and biosurfactants are identified as effector molecules in plant- microbe interactions, in pathogenesis and phyto-stimulation which can either be beneficial for the bacteria itself or for the crops. This book highlights current applications and research on bacterial hormones and surfactants to provide a timely overview. The chapters have been contributed by subject experts from around the world and include topics of varied importance which include phytohormones production by rhizospheric and endophytic bacteria, their role in rhizosphere competence, plant growth regulation, bioremediation, biosurfactants as antibiofilm agents and other aspects. This major new work represents a valuable source of information to all those scientists interested in microbial technology with respect to the microbial innovative products and applications towards sustainable agroecosystem.
How to achieve sustainable agricultural production without compromising environmental quality, agro-ecosystem function and biodiversity is a serious consideration in current agricultural practices. Farming systems’ growing dependency on chemical inputs (fertilizers, pesticides, nutrients etc.) poses serious threats with regard to crop productivity, soil fertility, the nutritional value of farm produce, management of pests and diseases, agro-ecosystem well-being, and health issues for humans and animals. At the same time, microbial inoculants in the form of biofertilizers, plant growth promoters, biopesticides, soil health managers, etc. have gained considerable attention among researchers, agriculturists, farmers and policy makers. The first volume of the book Microbial Inoculants in Sustainable Agricultural Productivity - Research Perspectives highlights the efforts of global experts with regard to various aspects of microbial inoculants. Emphasis is placed on recent advances in microbiological techniques for the isolation, characterization, identification and evaluation of functional properties using biochemical and molecular tools. The taxonomic characterization of agriculturally important microorganisms is documented, along with their applications in field conditions. The book exploresthe identification, characterization and diversity analysis of endophytic microorganisms in various crops including legumes/ non-legumes, as well as the assessment of their beneficial impacts in the context of promotingplant growth. Moreover, it provides essential updates onthe diversity and role of plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal mycorrhizal fungi (AMF). Further chaptersexamine in detailbiopesticides, thehigh-density cultivation of bioinoculants in submerged culture, seed biopriming strategies for abiotic and biotic stress tolerance, andPGPR as abio-control agent. Given its content,the book offers a valuable resource for researchers involved in research and development concerningPGPR, biopesticides and microbial inoculants.
The interest in eco-friendly, sustainable and organic farming cater high yield and quality in sustainable agriculture so as to relieve food scarcity. The plant growth and health promoting bacteria (PGHPR) are able to produce phytohormones and biosurfactants as effector metabolites in plant- microbe interactions and phyto-stimulation for their exploitation in agro-ecosystem. Bacterial phytohormones and biosurfactants are vital for plant growth and development, trigger nutrient availability, root colonization and imparting protection from phytopathogens in rhizosphere. This volume entitled "Bacterial Metabolites in Sustainable Agroecosystem" depicts various aspects of bacterial metabolites overtook on quest of research and concept up-gradation that can build emerging paradigm of future "Green Revolution".
Bacterial Secondary Metabolites: Synthesis and Applications in Agroecosystem presents the structure, properties, and biotechnological applications of bacterial metabolites and their upcoming industrial, pharmaceutical, antimicrobial, and anticancer applications. Chapters cover topics such as the use of lactic acid bacteria as an antifungal and antibacterial agent, bacterial siderophores structure and potential applications, and the role of cyanobacteria metabolites in disease management, among others. Plant and agri-food environmental scientists and researchers, graduate and post-graduate students in related fields will benefit from this reference book which is published as part of the series Nanobiotechnology for Plant Protection. - Explores how research might lead to the production of new bio-based commercial solutions to tackle global agricultural and human diseases - Contains extensive information to understand the intricate processes of cryptic genes and their relationship to the synthesis of bioactive chemicals - Provides in-depth insights into microbial biotechnology, namely secondary metabolites
Microbial Technology for Agro-Ecosystems: Crop Productivity, Sustainability, and Biofortification describes the application of competent microbes in plant growth promotion, nutrient management and recycling from molecular perspectives. Understanding of molecular mechanism of Microbial diversity in association with plant roots is very imperative for plant health and ecosystem equilibrium. - Covers fundamental mechanisms, molecular approaches and function aspects of microbial technology - Describes innovative approaches to the management, development and advancement of agro-ecosystem green technologies - Highlights improving soil biological health, microbial biomass, soil fertility and plant productivity
Phytohormones and Stress Responsive Secondary Metabolites provides a deep dive into the signaling pathways associated with phytohormones and phytometabolites. With a strong focus on plant stress responses and DNA technology, the book highlights plant biotechnology and metabolic engineering principles. Biotechnology, by using DNA editing technologies, allows the expression of plant genes into other plant species with desirable modulation on plant behavior. Beginning with an overview of phytohormone signaling, growth and abiotic and biotic stresses, subsequent chapters explore DNA modification strategies, epigenetic and epigenomic regulation, and miRNA regulation. This book will be an essential resource for students, researchers and agriculturalists interested in plant physiology, plant genetics and plant biotechnology. - Provides a comprehensive review of phytohormone and phytometabolite signaling pathways - Highlights recombinant DNA technology and therapeutic potential - Analyzes plant stress responses under both abiotic and biotic stresses
Volatiles and Metabolites of Microbes compiles the latest research and advancement in the field of volatiles, metabolites synthesized from the microbial strains such as actinomycetes, bacteria, cyanobacteria, and fungal species and their potential applications in the field of healthcare issue and sustainable agriculture. There is an urgent need to explore new and advanced biological methods for health industries and sustainable agriculture and to protect the environment from environmental pollution or contaminates, global warming, and also control the health of human beings from the side effects of various pharmaceuticals products. Focusing all these factors, Volatiles and Metabolites of Microbes explores new aspects of microorganism in terms of volatiles, enzymes, bioactive compounds synthesized from the microbes and their potential applications in the field of sustainable agriculture and health-related issues - Provides a broad aspect about volatiles, bioactive compounds, and secondary metabolites of microbes compiled in one cover - Gives the latest research and advancement in the field of volatiles, secondary metabolites, and bioactive compounds synthesized from the different microbial strains - Responds to new developments in the detection of the complex compound structures of volatiles - Offers insight to a very broad audience in Biotechnology, Applied Microbiology, Agronomy, and Pathology
Rhizomicrobiome: Current Status and Future Prospects for Agriculture and Environment explores the important potential of biocontrol agents in the reduction of overexploitation of synthetic pesticides, enhancing crop production, and maintaining the natural texture and health of agricultural soils. As concerns about sustainable production challenge current practices, this book presents opportunities for utilizing biological systems as part of the solution. Rhizomicrobiome is a significant part of plant biological system which impacts the plant growth and survival in different physiological conditions. Its composition includes different microbial networks whose presence is mainly impacted by the root exudates. Archaea, bacteria, protozoa, fungi, oomycetes, nematodes, microarthropods etc. are the significant parts of the rhizomicrobiome. Rhizomicrobiome could be that novel ecosystem housing the bioinoculants that can help create sustainable, productive growth environments. Written by a team of global experts Rhizomicrobiome explores the full range of rhizomicrobiome topics including sustainable agriculture, food security, and environmental management and will be a valuable resource for researchers, academics and advanced students. - Introduces the latest advancement in the sustainable agricultural practices, microbial biocontrol, and environmental management - Presents the prospects of, wide applications of, traditional uses of, and modern practices of harnessing the potential of rhizomicrobiome - Includes informative illustrations of recent trends of phyto and soil microbiome
**Selected for Doody's Core Titles® 2024 in Microbiology**Understanding Microbial Biofilms: Fundamentals to Applications focuses on the microbial biofilms of different environments. The book provides a comprehensive overview of the fundamental aspects of microbial biofilms, their existence in nature, their significance, and the different clinical and environmental problems associated with them. The book covers both the fundamentals and applications of microbial biofilms, with chapters on the introduction to the microbial community and its architecture, physiology, mechanisms and imaging of biofilms in nature and fungal, algal, and bacillus biofilm control. In addition, the book highlights the molecular and biochemical aspects of bacterial biofilms, providing a compilation of chapters on the bacterial community and communication from different environments. Finally, the book covers recent advancements in various aspects of microbial biofilms including the chapters on their biotechnological applications. All the chapters are written by experts who have been working on different aspects of microbial biofilms. - Illustrates fundamental aspects surrounding microbial biofilms, along with recent advancements - Provides an overview on the principal aspects of biofilms, i.e., formation, regulation, distribution, control, and application - Updates on the progress on biofilm regulation through 'omics' - Serves as a classical manual for all researchers, academicians, and students who would want complete insights on biofilms in a single resource - Covers all recent advancements and amendments on microbial biofilms
Microbial communities and their functions play a crucial role in the management of ecological, environmental and agricultural health on the Earth. Microorganisms are the key identified players for plant growth promotion, plant immunization, disease suppression, induced resistance and tolerance against stresses as the indicative parameters of improved crop productivity and sustainable soil health. Beneficial belowground microbial interactions with the rhizosphere help plants mitigate drought and salinity stresses and alleviate water stresses under the unfavorable environmental conditions in the native soils. Microorganisms that are inhabitants of such environmental conditions have potential solutions for them. There are potential microbial communities that can degrade xenobiotic compounds, pesticides and toxic industrial chemicals and help remediate even heavy metals, and thus they find enormous applications in environmental remediation. Microbes have developed intrinsic metabolic capabilities with specific metabolic networks while inhabiting under specific conditions for many generations and, so play a crucial role. The book Microbial Interventions in Agriculture and Environment is an effort to compile and present a great volume of authentic, high-quality, socially-viable, practical and implementable research and technological work on microbial implications. The whole content of the volume covers protocols, methodologies, applications, interactions, role and impact of research and development aspects on microbial interventions and technological outcomes in prospects of agricultural and environmental domain including crop production, plan-soil health management, food & nutrition, nutrient recycling, land reclamation, clean water systems and agro-waste management, biodegradation & bioremediation, biomass to bioenergy, sanitation and rural livelihood security. The covered topics and sub-topics of the microbial domain have high implications for the targeted and wide readership of researchers, students, faculty and scientists working on these areas along with the agri-activists, policymakers, environmentalists, advisors etc. in the Government, industries and non-government level for reference and knowledge generation.