Download Free Backpropagation Book in PDF and EPUB Free Download. You can read online Backpropagation and write the review.

Composed of three sections, this book presents the most popular training algorithm for neural networks: backpropagation. The first section presents the theory and principles behind backpropagation as seen from different perspectives such as statistics, machine learning, and dynamical systems. The second presents a number of network architectures that may be designed to match the general concepts of Parallel Distributed Processing with backpropagation learning. Finally, the third section shows how these principles can be applied to a number of different fields related to the cognitive sciences, including control, speech recognition, robotics, image processing, and cognitive psychology. The volume is designed to provide both a solid theoretical foundation and a set of examples that show the versatility of the concepts. Useful to experts in the field, it should also be most helpful to students seeking to understand the basic principles of connectionist learning and to engineers wanting to add neural networks in general -- and backpropagation in particular -- to their set of problem-solving methods.
Now, for the first time, publication of the landmark work inbackpropagation! Scientists, engineers, statisticians, operationsresearchers, and other investigators involved in neural networkshave long sought direct access to Paul Werbos's groundbreaking,much-cited 1974 Harvard doctoral thesis, The Roots ofBackpropagation, which laid the foundation of backpropagation. Now,with the publication of its full text, these practitioners can gostraight to the original material and gain a deeper, practicalunderstanding of this unique mathematical approach to socialstudies and related fields. In addition, Werbos has provided threemore recent research papers, which were inspired by his originalwork, and a new guide to the field. Originally written for readerswho lacked any knowledge of neural nets, The Roots ofBackpropagation firmly established both its historical andcontinuing significance as it: * Demonstrates the ongoing value and new potential ofbackpropagation * Creates a wealth of sound mathematical tools useful acrossdisciplines * Sets the stage for the emerging area of fast automaticdifferentiation * Describes new designs for forecasting and control which exploitbackpropagation * Unifies concepts from Freud, Jung, biologists, and others into anew mathematical picture of the human mind and how it works * Certifies the viability of Deutsch's model of nationalism as apredictive tool--as well as the utility of extensions of thiscentral paradigm "What a delight it was to see Paul Werbos rediscover Freud'sversion of 'back-propagation.' Freud was adamant (in The Projectfor a Scientific Psychology) that selective learning could onlytake place if the presynaptic neuron was as influenced as is thepostsynaptic neuron during excitation. Such activation of bothsides of the contact barrier (Freud's name for the synapse) wasaccomplished by reducing synaptic resistance by the absorption of'energy' at the synaptic membranes. Not bad for 1895! But Werbos1993 is even better." --Karl H. Pribram Professor Emeritus,Stanford University
Neural networks are a computing paradigm that is finding increasing attention among computer scientists. In this book, theoretical laws and models previously scattered in the literature are brought together into a general theory of artificial neural nets. Always with a view to biology and starting with the simplest nets, it is shown how the properties of models change when more general computing elements and net topologies are introduced. Each chapter contains examples, numerous illustrations, and a bibliography. The book is aimed at readers who seek an overview of the field or who wish to deepen their knowledge. It is suitable as a basis for university courses in neurocomputing.
There are many reasons why neural networks fascinate us and have captivated headlines in recent years. They make web searches better, organize photos, and are even used in speech translation. Heck, they can even generate encryption. At the same time, they are also mysterious and mind-bending: how exactly do they accomplish these things ? What goes on inside a neural network?On a high level, a network learns just like we do, through trial and error. This is true regardless if the network is supervised, unsupervised, or semi-supervised. Once we dig a bit deeper though, we discover that a handful of mathematical functions play a major role in the trial and error process. It also becomes clear that a grasp of the underlying mathematics helps clarify how a network learns. In the following chapters we will unpack the mathematics that drive a neural network. To do this, we will use a feedforward network as our model and follow input as it moves through the network.
(Bayreuth University, Germany), Jennie Si (Arizona State University, USA), and Hang Li (MicrosoftResearchAsia, China). Besides the regularsessions andpanels, ISNN 2008 also featured four special sessions focusing on some emerging topics.
This book contains state-of-the-art review articles on specific research areas in the civil engineering discipline-the areas include geotechnical engineering, hydraulics and water resources engineering, and structural engineering. The articles are written by invited authors who are currently active at the international level in their respective research fields.
The present volume is a natural follow-up to Neural Networks: Advances and Applications which appeared one year previously. As the title indicates, it combines the presentation of recent methodological results concerning computational models and results inspired by neural networks, and of well-documented applications which illustrate the use of such models in the solution of difficult problems. The volume is balanced with respect to these two orientations: it contains six papers concerning methodological developments and five papers concerning applications and examples illustrating the theoretical developments. Each paper is largely self-contained and includes a complete bibliography. The methodological part of the book contains two papers on learning, one paper which presents a computational model of intracortical inhibitory effects, a paper presenting a new development of the random neural network, and two papers on associative memory models. The applications and examples portion contains papers on image compression, associative recall of simple typed images, learning applied to typed images, stereo disparity detection, and combinatorial optimisation.
A new approach to the fast-developing world of neural hydrological modelling, this book is essential reading for academics and researchers in the fields of water sciences, civil engineering, hydrology and physical geography. Each chapter has been written by one or more eminent experts working in various fields of hydrological modelling. The b
Introduction to Neural Networks in Java, Second Edition, introduces the Java programmer to the world of Neural Networks and Artificial Intelligence. Neural network architectures such as the feedforward, Hopfield, and Self Organizing Map networks are discussed. Training techniques such as Backpropagation, Genetic Algorithms and Simulated Annealing are also introduced. Practical examples are given for each neural network. Examples include the Traveling Salesman problem, handwriting recognition, financial prediction, game strategy, learning mathematical functions and special application to Internet bots. All Java source code can be downloaded online.