Download Free Azimuthal Anisotropy In Gold Gold Collisions At 45 Gev Center Of Mass Energy Per Nucleon Pair Using Fixed Target Mode At The Relativistic Heavy Ion Collider Book in PDF and EPUB Free Download. You can read online Azimuthal Anisotropy In Gold Gold Collisions At 45 Gev Center Of Mass Energy Per Nucleon Pair Using Fixed Target Mode At The Relativistic Heavy Ion Collider and write the review.

Excited nuclear matter at high temperature and density results in the creation of a new state of matter called Quark Gluon Plasma (QGP). It is believed that the Universe was in the QGP state a few millionths of a second after the Big Bang. A QGP can be experimentally created for a very brief time by colliding heavy nuclei, such as gold, at ultra-relativistic energies. The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory consists of two circular rings, 3.8 km in circumference, which can accelerate heavy nuclei in two counter-rotating beams to nearly the speed of light (up to 100 GeV per beam). STAR (Solenoidal Tracker At RHIC) is one of two large detectors at the RHIC facility, and was constructed and is operated by a large international collaboration made up of more than 500 scientists from 56 institutions in 12 countries. STAR has been taking data from heavy ion collisions since the year 2000. An important component of the physics effort of the STAR collaboration is the Beam Energy Scan (BES), designed to study the properties of the Quantum Chromodynamics (QCD) phase diagram in the regions where a first-order phase transition and a critical point may exist. Phase-I of the BES program took data in 2010, 2011 and 2014, using Au+Au collisions at a center-of-mass energy per nucleon pair of 7.7, 11.5, 14.5, 19.6, 27 and 39 GeV. It is by now considered a well-established fact that the QGP phase exists. However, all evidence so far indicates that there is a smooth crossover when normal hadronic matter becomes QGP and vice versa in collisions at the top energy of RHIC (and likewise at the Large Hadron Collider at the CERN laboratory in Switzerland). At these very high energies, the net density of baryons like nucleons is quite low, since there are almost equal abundances of baryons and antibaryons. It is known that net-baryon compression increases as the beam energy is lowered below a few tens of GeV. Of course, if the beam energy is too low, then the QGP phase cannot be produced at all, so it has been proposed that there is an optimum beam energy, so far unknown, where phenomena like a first-order phase transition and a critical point might be observed. On the other hand, there also exists the possibility that a smooth crossover to QGP occurs throughout the applicable region of the QCD phase diagram. Experiments are needed to resolve these questions. In this dissertation, I focus on one of the main goals of the BES program, which is to search for a possible first-order phase transition from hadronic matter to QGP and back again, using measurements of azimuthal anisotropy. The momentum-space azimuthal anisotropy of the final-state particles from collisions can be expressed in Fourier harmonics. The first harmonic coefficient is called directed flow, and reflects the strength of the collective sideward motion, relative to the beam direction, of the particles. Models tell us that directed flow is imparted during the very early stage of a collision and is not much altered during subsequent stages of the collision. Thus directed flow can provide information about the early stages when the QGP phase exists for a short time. A subset of hydrodynamic and nuclear transport model calculations with the assumption of a first-order phase transition show a prominent dip in the directed flow versus beam energy. I present directed flow and its slope with respect to rapidity, for identified particle types, namely lambda, anti-lambda and kaons as a function of beam energy for central, intermediate and peripheral collisions. The production threshold of neutral strange particles requires them to be created earlier, and these particles have relatively long mean free path. Thus these particles may probe the QGP at earlier times. In addition, new Lambda measurements can provide more insight about baryon number transported to the midrapidity region by stopping process of the nuclear collision. It is noteworthy that net-baryon density (equivalent to baryon chemical potential) depends not only on beam energy but also on collision centrality. The centrality dependence of directed flow and its slope are also studied for all BES energies for nine identified particle types, lambda, anti-lambda, neutral kaons, charged kaons, protons, anti-protons, and charged pions. These detailed results for many particle species, where both centrality and beam energy are varied over a wide range, strongly constrain models. The measurements summarized above pave the way for a new round of model refinements and subsequent comparisons with data. If the latter does not lead to a clear conclusion, the BES Phase-II program will take data in 2019 and 2020 with an upgraded STAR detector with wider acceptance, greatly improved statistics, and will extend measurements to new energy points.
STAR (Solenoidal Tracker At RHIC) is one of two large detectors along the ring of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. Experiments that collide heavy nuclei at high energy have been taking data at RHIC since the year 2000. The main goal of RHIC has been to search for a new phase of matter called the Quark Gluon Plasma (QGP), and to determine its properties, including the phase diagram that governs the relationship between QGP and more conventional hadronic matter. This dissertation has a particular focus on analysis of STAR measurements of the anisotropy of particle emission over a range of colliding energies, and these particular measurements are made possible by a unique application of a detector subsystem called Beam-Beam Counters (BBCs), which are placed close to the beam lines on both sides of the collision region. This project has involved development of software that uses the hit pattern of charged particles in the BBCs to determine the collision reaction plane, for use in measurements of anisotropy. Anisotropic flow sheds light on the early partonic system, and according to models, is minimally distorted during the post-partonic stages of the collision. In this anisotropic flow analysis, the estimated reaction plane of each event is reconstructed using the BBC signals, which have a large rapidity gap between them. There is also a large rapidity gap between each BBC and the STAR Time Projection Chamber (the main STAR subsystem for measuring particle tracks). These large rapidity gaps allow us to measure correlations relative to the reaction plane with the least possible systematic error from what is known as "non-flow", i.e., background correlations unrelated to the reaction plane. Flow correlations are normally reported in terms Fourier coefficients, v1, v2, etc. Di- rected flow is quantified by the first harmonic (v1) in the Fourier expansion of the particle's azimuthal distribution with respect to the reaction plane. Elliptic flow is the name given to the second harmonic (v2), and triangular flow is the name for the third harmonic (v3). These harmonic coefficients carry information on the very early stages of the collision. The v1 component is emphasized in this dissertation, and the BBC information that is a unique feature of this work is especially important for v1 measurements. Until recently, higher-order odd harmonics were overlooked. These odd flow harmonics carry valuable information about the initial-state fluctuations of the colliding system. This dissertation includes a study of the flow harmonic related to dipole asymmetry and triangularity in the initial geometry.
This book attempts to cover the fascinating field of physics of relativistic heavy ions, mainly from the experimentalist's point of view. After the introductory chapter on quantum chromodynamics, basic properties of atomic nuclei, sources of relativistic nuclei, and typical detector set-ups are described in three subsequent chapters. Experimental facts on collisions of relativistic heavy ions are systematically presented in 15 consecutive chapters, starting from the simplest features like cross sections, multiplicities, and spectra of secondary particles and going to more involved characteristics like correlations, various relatively rare processes, and newly discovered features: collective flow, high pT suppression and jet quenching. Some entirely new topics are included, such as the difference between neutron and proton radii in nuclei, heavy hypernuclei, and electromagnetic effects on secondary particle spectra.Phenomenological approaches and related simple models are discussed in parallel with the presentation of experimental data. Near the end of the book, recent ideas about the new state of matter created in collisions of ultrarelativistic nuclei are discussed. In the final chapter, some predictions are given for nuclear collisions in the Large Hadron Collider (LHC), now in construction at the site of the European Organization for Nuclear Research (CERN), Geneva. Finally, the appendix gives us basic notions of relativistic kinematics, and lists the main international conferences related to this field. A concise reference book on physics of relativistic heavy ions, it shows the present status of this field.
At the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL), Long Island, NY, the main goal of research into heavy-ion collisions has been to understand Quantum Chromo Dynamics (QCD) in conditions of extreme temperature and energy density. At ordinary temperatures, the quarks and gluons are confined within particles like protons and neutrons, but at very high temperatures and densities, a new deconfined phase of quarks and gluons is created. This new phase is known as Quark Gluon Plasma (QGP).Quarks with the quantum numbers "charm" and "bottom" are relatively massive and are produced only rarely, and this category is called heavy flavor. Heavy-flavor measurements deepen our understanding of the properties and nature of the excited QGP state. Heavy-flavor particles are unique probes for studies of the hot and dense QGP medium created in high-energy collisions, as they are produced early in the evolution of the collision.STAR (Solenoidal Tracker At RHIC) is now the last operational detector at the RHIC facility, and was constructed and is operated by a large international collaboration. The STAR collaboration is composed of 68 institutions from 14 countries, with a total of 743 collaborators. In 2014, STAR employed a new silicon pixel technology detector named the Heavy Flavor Tracker (HFT). The HFT has separate layers of silicon to guide tracks reconstructed in the main tracking detector of STAR (the Time Projection Chamber) down to a spatial resolution of around 30 [mu]m in the region near the center of STAR where the collisions occur, which allows particles with very short lifetimes (notably heavy flavor particles) to be identified.In this dissertation, I use the HFT to measure particles with the charm quantum number. This work also involves using a pair of calorimeter detectors at a polar angle of zero degrees to estimate the azimuthal angle of the reaction plane in each collision. About 2.2 billion collisions are in the dataset being studied. These measurements allow the azimuthal anisotropy (flow) of charmed particles to be studied. The results are compared to similar studies involving light quarks and the predictions of several theoretical models. My results show a surprisingly large first Fourier harmonic in the anisotropy for particles with charm compared with particles with lighter flavors (strange, up, down). Specifically, the signal for charm is about 30 times larger, and no model comes anywhere close to predicting this pattern.
The main purpose of Relativistic Heavy Ion Collider (RHIC) program is to study the Quark-Gluon Plasma (QGP), a deconfined state of matter believed to be created in ultra-relativistic heavy ion collisions. Heavy quarks, expected to be produced during the earlier stages of heavy ion collisions, serve as an important probe of the QGP. The following dissertation presents measurements of single muons resulting from the semileptonic decay of heavy avor quarks in the rapidity range of 1:4
Abstract: Anisotropic flow in high energy heavy-ion collisions is taken as a key evidence for the formation of QGP for brief seconds right after the collisions. Hydrodynamic models including QGP formation are accurate at predicting the azimuthal anisotropy of the produced particles at low transverse momenta. At high momenta however, hydrodynamic models predict no azimuthal anisotropy for particles of different masses and quark-flavors; the logic being that because of their high momenta, the particles pass through the media without having any time to have any reactivity. This is contrary to results from experiments where measurements of particles of different quark flavors show non-zero elliptic flow. To study this deviation, we run PYTHIA simulation of proton-proton collisions at center- of-mass energies equivalent to those at RHIC and LHC; 200 GeV and 13 TeV. Since in PYTHIA simulations no QGP if formed, and there is no final-state interaction, results in our simulation would act as probes to be compared to the results of elliptic flow from real experiments. Our results showed non-zero results for the elliptic flow of pions, heavy mesons and direct photons. Those results are evident of the possible bias in the way the reaction plane is calculated, since all the other factors are controlled for in the PYTHIA simulations. To make up for this inherent bias, the results from PYTHIA should be subtracted from the results of elliptic flow in real experiments, to end up with unbiased results for elliptic flow from the different colliders.