Download Free Averaging Forecasts From Vars With Uncertain Instabilities Book in PDF and EPUB Free Download. You can read online Averaging Forecasts From Vars With Uncertain Instabilities and write the review.

A body of recent work suggests commonly-used VAR models of output, inflation, and interest rates may be prone to instabilities. In the face of such instabilities, a variety of estimation or forecasting methods might be used to improve the accuracy of forecasts from a VAR. These methods include using different approaches to lag selection, different observation windows for estimation, (over-) differencing, intercept correction, stochastically time-varying parameters, break dating, discounted least squares, Bayesian shrinkage, and detrending of inflation and interest rates. Although each individual method could be useful, the uncertainty inherent in any single representation of instability could mean that combining forecasts from the entire range of VAR estimates will further improve forecast accuracy. Focusing on models of U.S. output, prices, and interest rates, this paper examines the effectiveness of combination in improving VAR forecasts made with real-time data. The combinations include simple averages, medians, trimmed means, and a number of weighted combinations, based on: Bates-Granger regressions, factor model estimates, regressions involving just forecast quartiles, Bayesian model averaging, and predictive least squares-based weighting. Our goal is to identify those approaches that, in real time, yield the most accurate forecasts of these variables. We use forecasts from simple univariate time series models and the Survey of Professional Forecasters as benchmarks.
This book provides empirical applications of macroeconometric methods through discussions on key issues in the Indian economy. It deals with issues of topical relevance in the arena of macroeconomics. The aim is to apply time series and financial econometric methods to macroeconomic issues of an emerging economy such as India. The data sources are given in each chapter, and students and researchers may replicate the analyses.The book is divided into three parts—Part I: Macroeconomic Modelling and Policy; Part II: Forecasting the Indian Economy and Part III: Business Cycles and Global Crises. It provides a holistic understanding of the techniques with each chapter delving into a relevant issue analysed using appropriate methods—Chapter 1: Introduction; Chapter 2: Macroeconomic Modelling and Bayesian Methods; Chapter 3: Monetary Policy Framework in India; Chapter 4: Determinants of Yields on Government Securities in India; Chapter 5: Monetar y Transmission in the Indian Economy; Chapter 6: India’s Bilateral Export Growth and Exchange Rate Volatility: A Panel GMM Approach; Chapter 7: Aggregate and Sectoral Productivity Growth in the Indian Economy: Analysis and Determinants; Chapter 8: Forecasting the INR/USD Exchange Rate: A BVAR Framework; Chapter 9: Forecasting India’s Inflation in a Data-Rich Environment: A FAVAR Study; Chapter 10: A Structural Macroeconometric Model for India; Chapter 11: International Synchronization of Growth Rate Cycles: An Analysis in Frequency Domain; Chapter 12: Inter-Linkages Between Asian and U.S. Stock Market Returns: A Multivariate GARCH Analysis; Chapter 13: The Increasing Synchronization of International Recessions. Since the selection of issues is from macroeconomic aspects of the Indian economy, the book has wide applications and is useful for students and researchers of fields such as applied econometrics, time series econometrics, financial econometrics, forecasting methods and macroeconomics.
Believing in a single model may be dangerous, and addressing model uncertainty by averaging different models in making forecasts may be very beneficial. In this thesis we focus on forecasting financial time series using model averaging schemes as a way to produce optimal forecasts. We derive and discuss in simulation exercises and empirical applications model averaging techniques that can reproduce stylized facts of financial time series, such as low predictability and time-varying patterns. We emphasize that model averaging is not a "magic" methodology which solves a priori problems of poorly forecasting. Averaging techniques have an essential requirement: individual models have to fit data. In the first section we provide a general outline of the thesis and its contributions to previ ous research. In Chapter 2 we focus on the use of time varying model weight combinations. In Chapter 3, we extend the analysis in the previous chapter to a new Bayesian averaging scheme that models structural instability carefully. In Chapter 4 we focus on forecasting the term structure of U.S. interest rates. In Chapter 5 we attempt to shed more light on forecasting performance of stochastic day-ahead price models. We examine six stochastic price models to forecast day-ahead prices of the two most active power exchanges in the world: the Nordic Power Exchange and the Amsterdam Power Exchange. Three of these forecasting models include weather forecasts. To sum up, the research finds an increase of forecasting power of financial time series when parameter uncertainty, model uncertainty and optimal decision making are included.
The highly prized ability to make financial plans with some certainty about the future comes from the core fields of economics. In recent years the availability of more data, analytical tools of greater precision, and ex post studies of business decisions have increased demand for information about economic forecasting. Volumes 2A and 2B, which follows Nobel laureate Clive Granger's Volume 1 (2006), concentrate on two major subjects. Volume 2A covers innovations in methodologies, specifically macroforecasting and forecasting financial variables. Volume 2B investigates commercial applications, with sections on forecasters' objectives and methodologies. Experts provide surveys of a large range of literature scattered across applied and theoretical statistics journals as well as econometrics and empirical economics journals. The Handbook of Economic Forecasting Volumes 2A and 2B provide a unique compilation of chapters giving a coherent overview of forecasting theory and applications in one place and with up-to-date accounts of all major conceptual issues. - Focuses on innovation in economic forecasting via industry applications - Presents coherent summaries of subjects in economic forecasting that stretch from methodologies to applications - Makes details about economic forecasting accessible to scholars in fields outside economics
Forecasts guide decisions in all areas of economics and finance. Economic policy makers base their decisions on business cycle forecasts, investment decisions of firms are based on demand forecasts, and portfolio managers try to outperform the market based on financial market forecasts. Forecasts extract relevant information from the past and help to reduce the inherent uncertainty of the future. The topic of this special issue of the Journal of Economics and Statistics is the theory and practise of forecasting and forecast evaluation and an overview of the state of the art of forecasting.
Section headings in this handbook include: 'Forecasting Methodology; 'Forecasting Models'; 'Forecasting with Different Data Structures'; and 'Applications of Forecasting Methods.'.
This Handbook provides up-to-date coverage of both new and well-established fields in the sphere of economic forecasting. The chapters are written by world experts in their respective fields, and provide authoritative yet accessible accounts of the key concepts, subject matter, and techniques in a number of diverse but related areas. It covers the ways in which the availability of ever more plentiful data and computational power have been used in forecasting, in terms of the frequency of observations, the number of variables, and the use of multiple data vintages. Greater data availability has been coupled with developments in statistical theory and economic analysis to allow more elaborate and complicated models to be entertained; the volume provides explanations and critiques of these developments. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models, as well as models for handling data observed at mixed frequencies, high-frequency data, multiple data vintages, methods for forecasting when there are structural breaks, and how breaks might be forecast. Also covered are areas which are less commonly associated with economic forecasting, such as climate change, health economics, long-horizon growth forecasting, and political elections. Econometric forecasting has important contributions to make in these areas along with how their developments inform the mainstream.
A comprehensive and integrated approach to economic forecasting problems Economic forecasting involves choosing simple yet robust models to best approximate highly complex and evolving data-generating processes. This poses unique challenges for researchers in a host of practical forecasting situations, from forecasting budget deficits and assessing financial risk to predicting inflation and stock market returns. Economic Forecasting presents a comprehensive, unified approach to assessing the costs and benefits of different methods currently available to forecasters. This text approaches forecasting problems from the perspective of decision theory and estimation, and demonstrates the profound implications of this approach for how we understand variable selection, estimation, and combination methods for forecasting models, and how we evaluate the resulting forecasts. Both Bayesian and non-Bayesian methods are covered in depth, as are a range of cutting-edge techniques for producing point, interval, and density forecasts. The book features detailed presentations and empirical examples of a range of forecasting methods and shows how to generate forecasts in the presence of large-dimensional sets of predictor variables. The authors pay special attention to how estimation error, model uncertainty, and model instability affect forecasting performance. Presents a comprehensive and integrated approach to assessing the strengths and weaknesses of different forecasting methods Approaches forecasting from a decision theoretic and estimation perspective Covers Bayesian modeling, including methods for generating density forecasts Discusses model selection methods as well as forecast combinations Covers a large range of nonlinear prediction models, including regime switching models, threshold autoregressions, and models with time-varying volatility Features numerous empirical examples Examines the latest advances in forecast evaluation Essential for practitioners and students alike
Forecasting in the presence of structural breaks and model uncertainty are active areas of research with implications for practical problems in forecasting. This book addresses forecasting variables from both Macroeconomics and Finance, and considers various methods of dealing with model instability and model uncertainty when forming forecasts.
The purpose of this book is to establish a connection between the traditional field of empirical economic research and the emerging area of empirical financial research and to build a bridge between theoretical developments in these areas and their application in practice. Accordingly, it covers broad topics in the theory and application of both empirical economic and financial research, including analysis of time series and the business cycle; different forecasting methods; new models for volatility, correlation and of high-frequency financial data and new approaches to panel regression, as well as a number of case studies. Most of the contributions reflect the state-of-art on the respective subject. The book offers a valuable reference work for researchers, university instructors, practitioners, government officials and graduate and post-graduate students, as well as an important resource for advanced seminars in empirical economic and financial research.