Download Free Autonomous Mobile Systems Book in PDF and EPUB Free Download. You can read online Autonomous Mobile Systems and write the review.

The second edition of a comprehensive introduction to all aspects of mobile robotics, from algorithms to mechanisms. Mobile robots range from the Mars Pathfinder mission's teleoperated Sojourner to the cleaning robots in the Paris Metro. This text offers students and other interested readers an introduction to the fundamentals of mobile robotics, spanning the mechanical, motor, sensory, perceptual, and cognitive layers the field comprises. The text focuses on mobility itself, offering an overview of the mechanisms that allow a mobile robot to move through a real world environment to perform its tasks, including locomotion, sensing, localization, and motion planning. It synthesizes material from such fields as kinematics, control theory, signal analysis, computer vision, information theory, artificial intelligence, and probability theory. The book presents the techniques and technology that enable mobility in a series of interacting modules. Each chapter treats a different aspect of mobility, as the book moves from low-level to high-level details. It covers all aspects of mobile robotics, including software and hardware design considerations, related technologies, and algorithmic techniques. This second edition has been revised and updated throughout, with 130 pages of new material on such topics as locomotion, perception, localization, and planning and navigation. Problem sets have been added at the end of each chapter. Bringing together all aspects of mobile robotics into one volume, Introduction to Autonomous Mobile Robots can serve as a textbook or a working tool for beginning practitioners. Curriculum developed by Dr. Robert King, Colorado School of Mines, and Dr. James Conrad, University of North Carolina-Charlotte, to accompany the National Instruments LabVIEW Robotics Starter Kit, are available. Included are 13 (6 by Dr. King and 7 by Dr. Conrad) laboratory exercises for using the LabVIEW Robotics Starter Kit to teach mobile robotics concepts.
Offers a theoretical and practical guide to the communication and navigation of autonomous mobile robots and multi-robot systems This book covers the methods and algorithms for the navigation, motion planning, and control of mobile robots acting individually and in groups. It addresses methods of positioning in global and local coordinates systems, off-line and on-line path-planning, sensing and sensors fusion, algorithms of obstacle avoidance, swarming techniques and cooperative behavior. The book includes ready-to-use algorithms, numerical examples and simulations, which can be directly implemented in both simple and advanced mobile robots, and is accompanied by a website hosting codes, videos, and PowerPoint slides Autonomous Mobile Robots and Multi-Robot Systems: Motion-Planning, Communication and Swarming consists of four main parts. The first looks at the models and algorithms of navigation and motion planning in global coordinates systems with complete information about the robot’s location and velocity. The second part considers the motion of the robots in the potential field, which is defined by the environmental states of the robot's expectations and knowledge. The robot's motion in the unknown environments and the corresponding tasks of environment mapping using sensed information is covered in the third part. The fourth part deals with the multi-robot systems and swarm dynamics in two and three dimensions. Provides a self-contained, theoretical guide to understanding mobile robot control and navigation Features implementable algorithms, numerical examples, and simulations Includes coverage of models of motion in global and local coordinates systems with and without direct communication between the robots Supplemented by a companion website offering codes, videos, and PowerPoint slides Autonomous Mobile Robots and Multi-Robot Systems: Motion-Planning, Communication and Swarming is an excellent tool for researchers, lecturers, senior undergraduate and graduate students, and engineers dealing with mobile robots and related issues.
Autonomous mobile systems (AMS) are systems capable of some mobility and equipped with advanced sensor devices in order to flexibly respond to changing environmental situations, thus achieving some degree of autonomy. The purpose of this book is to contribute to some essential topics in this broad research area related to sensing and control, but not to present a complete design of an AMS. Subjects conceming knowledge based control and decision, such as moving around obstacles, task planning and diagnosis are left for future publications in this series. Research in the area of AMS has grown rapidly during the last decade, see e.g. [WAXMAN et al. 87], [DICKMANNS , ZAPP 87]. The requirements of an AMS strongly depends on the desired tasks the system should execute, its operational environment and the expected speed of the AMS. For instance, road vehicles obtain velocities of 10 m/s and more, therefore the processing of sensor data such as video image sequences has to be very fast and simple, while indoor mobile robots deal with shorter distances and lower speeds, thus more sophistcated techniques are applicable and -as is done in our approach- additional sensors can be integrated to allow for multi sensor processing.
Wheeled Mobile Robotics: From Fundamentals Towards Autonomous Systemscovers the main topics from the wide area of mobile robotics, explaining all applied theory and application. The book gives the reader a good foundation, enabling them to continue to more advanced topics. Several examples are included for better understanding, many of them accompanied by short MATLAB® script code making it easy to reuse in practical work. The book includes several examples of discussed methods and projects for wheeled mobile robots and some advanced methods for their control and localization. It is an ideal resource for those seeking an understanding of robotics, mechanics, and control, and for engineers and researchers in industrial and other specialized research institutions in the field of wheeled mobile robotics. Beginners with basic math knowledge will benefit from the examples, and engineers with an understanding of basic system theory and control will find it easy to follow the more demanding fundamental parts and advanced methods explained. - Offers comprehensive coverage of the essentials of the field that are suitable for both academics and practitioners - Includes several examples of the application of algorithms in simulations and real laboratory projects - Presents foundation in mobile robotics theory before continuing with more advanced topics - Self-sufficient to beginner readers, covering all important topics in the mobile robotics field - Contains specific topics on modeling, control, sensing, path planning, localization, design architectures, and multi-agent systems
It has long been the goal of engineers to develop tools that enhance our ability to do work, increase our quality of life, or perform tasks that are either beyond our ability, too hazardous, or too tedious to be left to human efforts. Autonomous mobile robots are the culmination of decades of research and development, and their potential is seemingly unlimited. Roadmap to the Future Serving as the first comprehensive reference on this interdisciplinary technology, Autonomous Mobile Robots: Sensing, Control, Decision Making, and Applications authoritatively addresses the theoretical, technical, and practical aspects of the field. The book examines in detail the key components that form an autonomous mobile robot, from sensors and sensor fusion to modeling and control, map building and path planning, and decision making and autonomy, and to the final integration of these components for diversified applications. Trusted Guidance A duo of accomplished experts leads a team of renowned international researchers and professionals who provide detailed technical reviews and the latest solutions to a variety of important problems. They share hard-won insight into the practical implementation and integration issues involved in developing autonomous and open robotic systems, along with in-depth examples, current and future applications, and extensive illustrations. For anyone involved in researching, designing, or deploying autonomous robotic systems, Autonomous Mobile Robots is the perfect resource.
Going beyond the traditional field of robotics to include other mobile vehicles, this reference and "recipe book" describes important theoretical concepts, techniques, and applications that can be used to build truly mobile intelligent autonomous systems (MIAS). With the infusion of neural networks, fuzzy logic, and genetic algorithm paradigms for MIAS, it blends modeling, sensors, control, estimation, optimization, signal processing, and heuristic methods in MIAS and robotics, and includes examples and applications throughout. Offering a comprehensive view of important topics, it helps readers understand the subject from a system-theoretic and practical point of view.
Mobile robots have been increasingly applied in many different scenarios, such as space exploration and search and rescue, where the robots are required to travel over uneven terrain while outdoors. This book provides a new framework and the related algorithms for designing autonomous mobile robotic systems in such unknown outdoor environments.
This book introduces concepts in mobile, autonomous robotics to 3rd-4th year students in Computer Science or a related discipline. The book covers principles of robot motion, forward and inverse kinematics of robotic arms and simple wheeled platforms, perception, error propagation, localization and simultaneous localization and mapping. The cover picture shows a wind-up toy that is smart enough to not fall off a table just using intelligent mechanism design and illustrate the importance of the mechanism in designing intelligent, autonomous systems. This book is open source, open to contributions, and released under a creative common license.
The economic potential of autonomous mobile robots will increase tremendously during the next years. Service robots such as cleaning machines and inspection or assistance robots will bring us great support in our daily lives. This textbook provides an introduction to the methods of controlling these robotic systems. Starting from mobile robot kinematics, the reader receives a systematic overview of the basic problems as well as methods and algorithms used for solving them. Localisation, object recognition, map building, navigation and control architectures for autonomous vehicles will be discussed in detail. In conclusion, a survey of specific service robot applications is included as well. This book is a very useful introduction to mobile robotics for beginners as well as advanced students and engineers.
The 22nd Conference on Autonomous Mobile Systems (AMS 2012) provides a platform for idea exchange, scientific discussion and cooperation for scientists from universities as well as industry. Autonomous mobile systems as well as their practical approach are in the center of interest. The presented selection of articles focuses on approaches from the fields of perception and sensors, mapping and localization, control, navigation, micro- and nano robotics, machine learning, autonomous cars, humanoid robots, system architectures and the application in autonomous mobile systems.