Download Free Automotive Engineering An Introduction Book in PDF and EPUB Free Download. You can read online Automotive Engineering An Introduction and write the review.

The automotive industry is one of the largest and most important industries in the world. Cars, buses, and other engine-based vehicles abound in every country on the planet, and it is continually evolving, with electric cars, hybrids, self-driving vehicles, and so on. Technologies that were once thought to be decades away are now on our roads right now. Engineers, technicians, and managers are constantly needed in the industry, and, often, they come from other areas of engineering, such as electrical engineering, process engineering, or chemical engineering. Introductory books like this one are very useful for engineers who are new to the industry and need a tutorial. Also valuable as a textbook for students, this introductory volume not only covers the basics of automotive engineering, but also the latest trends, such as self-driving vehicles, hybrids, and electric cars. Not only useful as an introduction to the science or a textbook, it can also serve as a valuable reference for technicians and engineers alike. The volume also goes into other subjects, such as maintenance and performance. Data has always been used in every company irrespective of its domain to improve the operational efficiency and performance of engines. This work deals with details of various automotive systems with focus on designing various components of these system to suit the working conditions on roads. Whether a textbook for the student, an introduction to the industry for the newly hired engineer, or a reference for the technician or veteran engineer, this volume is the perfect introduction to the science of automotive engineering.
In the introduction of Automotive Engineering Fundamentals, Richard Stone and Jeffrey K. Ball provide a fascinating and often amusing history of the passenger vehicle, showcasing the various highs and lows of this now-indispensable component of civilized societies. The authors then provide an overview of the publication, which is designed to give the student of automotive engineering a basic understanding of the principles involved with designing a vehicle. From engines and transmissions to vehicle aerodynamics and computer modeling, the intelligent, interesting presentation of core concepts in Automotive Engineering Fundamentals is sure to make this an indispensable resource for engineering students and professionals alike.
The automotive industry is under constant pressure to design vehicles capable of meeting increasingly demanding challenges such as improved fuel economy, enhanced safety and effective emission control. Drawing on the knowledge of leading experts, Advanced materials in automotive engineering explores the development, potential and impact of using such materials.Beginning with a comprehensive introduction to advanced materials for vehicle lightweighting and automotive applications, Advanced materials in automotive engineering goes on to consider nanostructured steel for automotive body structures, aluminium sheet and high pressure die-cast aluminium alloys for automotive applications, magnesium alloys for lightweight powertrains and automotive bodies, and polymer and composite moulding technologies. The final chapters then consider a range of design and manufacturing issues that need to be addressed when working with advanced materials, including the design of advanced automotive body structures and closures, technologies for reducing noise, vibration and harshness, joining systems, and the recycling of automotive materials.With its distinguished editor and international team of contributors, Advanced materials in automotive engineering is an invaluable guide for all those involved in the engineering, design or analysis of motor vehicle bodies and components, as well as all students of automotive design and engineering. - Explores the development, potential and impact of using advanced materials for improved fuel economy, enhanced safety and effective mission control in the automotive industry - Provides a comprehensive introduction to advanced materials for vehicle lightweighting and automotive applications - Covers a range of design ideas and manufacturing issues that arise when working with advanced materials, including technologies for reducing noise, vibration and harshness, and the recycling of automotive materials
The current automotive industry faces numerous challenges, including increased global competition, more stringent environmental and safety requirements, the need for higher performance vehicles, and reducing costs. The materials used in automotive engineering play key roles in overcoming these issues. Automotive Engineering: Lightweight, Functional
This book introduces the concept of software architecture as one of the cornerstones of software in modern cars. Following a historical overview of the evolution of software in modern cars and a discussion of the main challenges driving that evolution, Chapter 2 describes the main architectural styles of automotive software and their use in cars’ software. Chapter 3 details this further by presenting two modern architectural styles, i.e. centralized and federated software architectures. In Chapter 4, readers will find a description of the software development processes used to develop software on the car manufacturers’ side. Chapter 5 then introduces AUTOSAR – an important standard in automotive software. Chapter 6 goes beyond simple architecture and describes the detailed design process for automotive software using Simulink, helping readers to understand how detailed design links to high-level design. The new chapter 7 reports on how machine learning is exploited in automotive software e.g. for image recognition and how both on-board and off-board learning are applied. Next, Chapter 8 presents a method for assessing the quality of the architecture – ATAM (Architecture Trade-off Analysis Method) – and provides a sample assessment, while Chapter 9 presents an alternative way of assessing the architecture, namely by using quantitative measures and indicators. Subsequently Chapter 10 dives deeper into one of the specific properties discussed in Chapter 8 – safety – and details an important standard in that area, the ISO/IEC 26262 norm. Lastly, Chapter 11 presents a set of future trends that are currently emerging and have the potential to shape automotive software engineering in the coming years. This book explores the concept of software architecture for modern cars and is intended for both beginning and advanced software designers. It mainly aims at two different groups of audience – professionals working with automotive software who need to understand concepts related to automotive architectures, and students of software engineering or related fields who need to understand the specifics of automotive software to be able to construct cars or their components. Accordingly, the book also contains a wealth of real-world examples illustrating the concepts discussed and requires no prior background in the automotive domain. Compared to the first edition, besides the two new chapters 3 and 7 there are considerable updates in chapters 5 and 8 especially.
The modern tire is the most complex, composite product in mass production. Yet given its complexity and required performance, there is little information in the public domain regarding its development. This book provides an introduction to tire design, construction, and manufacturing in the context of materials technologies used today, along with future trends and disrupting technologies. Focuses on design and construction Discusses the relationship between materials and performance Reviews tire uniformity as a key differentiator among manufacturers Evaluates design and construction features versus performance Written for engineers in the polymer, industrial, chemical, mechanical, and automotive industries, this book offers a comprehensive view of tire design, including materials selection, construction, manufacturing, quality control, and future trends.
Welcome to the forefront of knowledge with Cybellium, your trusted partner in mastering the cutting-edge fields of IT, Artificial Intelligence, Cyber Security, Business, Economics and Science. Designed for professionals, students, and enthusiasts alike, our comprehensive books empower you to stay ahead in a rapidly evolving digital world. * Expert Insights: Our books provide deep, actionable insights that bridge the gap between theory and practical application. * Up-to-Date Content: Stay current with the latest advancements, trends, and best practices in IT, Al, Cybersecurity, Business, Economics and Science. Each guide is regularly updated to reflect the newest developments and challenges. * Comprehensive Coverage: Whether you're a beginner or an advanced learner, Cybellium books cover a wide range of topics, from foundational principles to specialized knowledge, tailored to your level of expertise. Become part of a global network of learners and professionals who trust Cybellium to guide their educational journey. www.cybellium.com
This book presents the state of the art, challenges and future trends in automotive software engineering. The amount of automotive software has grown from just a few lines of code in the 1970s to millions of lines in today’s cars. And this trend seems destined to continue in the years to come, considering all the innovations in electric/hybrid, autonomous, and connected cars. Yet there are also concerns related to onboard software, such as security, robustness, and trust. This book covers all essential aspects of the field. After a general introduction to the topic, it addresses automotive software development, automotive software reuse, E/E architectures and safety, C-ITS and security, and future trends. The specific topics discussed include requirements engineering for embedded software systems, tools and methods used in the automotive industry, software product lines, architectural frameworks, various related ISO standards, functional safety and safety cases, cooperative intelligent transportation systems, autonomous vehicles, and security and privacy issues. The intended audience includes researchers from academia who want to learn what the fundamental challenges are and how they are being tackled in the industry, and practitioners looking for cutting-edge academic findings. Although the book is not written as lecture notes, it can also be used in advanced master’s-level courses on software and system engineering. The book also includes a number of case studies that can be used for student projects.
An Introduction to Modern Vehicle Design starts from basic principles and builds up analysis procedures for all major aspects of vehicle and component design. Subjects of current interest to the motor industry - such as failure prevention, designing with modern material, ergonomics, and control systems - are covered in detail, with a final chapter discussing future trends in automotive design. Extensive use of illustrations, examples, and case studies provides the reader with a thorough understanding of design issues and analysis methods.
This book reflects the shift in design paradigm in automobile industry. It presents future innovations, often referred as “automotive systems engineering”. These cause fundamental innovations in the field of driver assistance systems and electro-mobility as well as fundamental changes in the architecture of the vehicles. New driving functionalities can only be realized if the software programs of multiple electronic control units work together correctly. This volume presents the new and innovative methods which are mandatory to master the complexity of the vehicle of the future.