Download Free Automated System For Gating System Design Of A Die Casting Die Book in PDF and EPUB Free Download. You can read online Automated System For Gating System Design Of A Die Casting Die and write the review.

Design of a die-casting die is a critical activity for its manufacturing and further downstream activities. Further, in design of a die-casting die, activities like cavity design, cavity layout and design of gating system are essential components. Design of gating system for a die-casting die is dependent upon a number of parameters which are influenced by part design and die-casting alloy. Gating system design takes much time of the die-casting expert since it requires lot of manual input and a number of iterations to finalize the design. This requires a good knowledge of die-casting process, making this activity completely dependent on the user. In modern day industry lot of CAD/CAM tools are being applied for design, development and manufacturing of a die-casting die. However, dependency on a die-casting expert throughout design and manufacturing of die-casting die makes it a quite lengthy process. Gating system design being one of the major activities in die design also takes much time. Therefore, it would be quite beneficial to automate the activity of the gating system design. This work is about computer aided design of gating system for die-casting die. Proposed system takes CAD file of the die-casting part as input and uses die-casting process knowledge to determine different parameters for the gating system. Designs of the components of the gating system like runner, gate and overflow have been attempted. A feature library has been proposed as a part of this work which together with parametric design of the gating system generates CAD model of the components of the gating system. The system has been tested on a number of industrial parts and results found are quite encouraging. The system would go a long way in bridging the gap between designing and manufacturing of die-casting.
Master's Thesis from the year 2017 in the subject Engineering - Mechanical Engineering, grade: 8, , language: English, abstract: This work presents a system that would help in automatic design of multi-gates for multi-cavities dies. The system is able to automate: (i) the determination of the placement of gate, and (ii) determination of the shape of gate for die-casting parts having simple shapes. The system has to be implemented in GUI of MATLAB 7.10 using the best industry practices and recommendations from NADCA for gating-system design. The proposed system is able to generate parameters of multi-cavity gating-system for parts requiring multi-gates from the part model data. The other information required for working of the system includes material properties, die-casting process parameters and die-casting casting machine parameters which comes under the data initialization process. The parameters of the gating-system which are determined by the system are used for design of gating-system for the multi-cavity dies. This is done by updating the parameters of pre-modeled gating-system features stored as feature library. Chapter 3 , 4 and 5 present the various modules of the system along with its implementation on case-study parts. The results from the case-studies are quite encouraging and are in-line with the best industry practices. The present work describes a novel methodology for computer-aided automatic placement of the gating system for a die-casting part. it uses the parting line information to identify the probable positions for the placement of the gating system. This aspect of die-design has not received due attention of the researchers in the past. Moreover, the automated gating-system design for die-casting parts that require multiple agates in a multi-cavity die has not been attempted. Both these features provide the originality to the present work.
Designing in sand casting is a critical activity for manufacturing. Further, activities like cavity design, cavity layout and design of gating system are essential in design. Design of gating system in sand casting is dependent upon a various parameters. Gating system design requires lot of manual input and a number of iterations to finalize the design. This requires a good knowledge of casting process, making this activity completely dependent on the user. In present day industry, lot of CAD/CAM tools are applied for design, development and manufacturing. However, need of sand casting expert throughout design and manufacturing makes it a quite lengthy process. Gating system design being one of the major activities also takes much time. Therefore, it would be quite beneficial to develop a system for automated generation of gating system. Proposed system takes CAD file of the die casting part as input and uses sand casting process, machine and alloy knowledge to determine different parameters for the gating system. Designs of the components of the gating system like runner, gate and overflow have been attempted. A feature library has been proposed as a part of this work which together with parametric design of the gating system generates CAD model of the components of the gating system. The system would go a long way in bridging the gap between designing and manufacturing of die-casting.
Examining processes that affect more than 70 percent of consumer products ranging from computers to medical devices and automobiles, this reference presents the latest research in automated plastic injection and die casting mold design and manufacture. It analyzes many industrial examples and methodologies while focusing on the algorithms, implementation procedures, and system architectures that will lead to a fully automated or semi-automated computer-aided injection mold design system (CADIMDS). This invaluable guide in this challenging area of precision engineering summarizes key findings and innovations from the authors' many years of research on intelligent mold design technologies.
This book offers a snapshot of recent developments in improving the properties and performance of engineering materials and structures. It discusses modeling properties related to classical mechanical, thermal, electrical and optical fields as well as those related to surface-specific quantities (e.g. roughness, wear and modifications due to surface coatings). The material types presented range from classical metals and synthetic materials to composites. Competitiveness due to cost efficiency (e.g. lighter structures and the corresponding fuel savings for transportation systems) and sustainability (e.g. recyclability or reusability) are the driving factors for engineering developments. The outcomes of these efforts are difficult to be accurately monitored due to the ongoing evaluation cycles.
Selected, peer reviewed papers from the 2012 International Conference on Frontiers of Mechanical Engineering and Materials Engineering (MEME 2012), July 27-29, 2012, HongKong
This book offers a snapshot of recent developments in improving the properties and performance of engineering materials and structures. It discusses modeling properties related to classical mechanical, thermal, electrical and optical fields as well as those related to surface-specific quantities (e.g. roughness, wear and modifications due to surface coatings). The material types presented range from classical metals and synthetic materials to composites. Competitiveness due to cost efficiency (e.g. lighter structures and the corresponding fuel savings for transportation systems) and sustainability (e.g. recyclability or reusability) are the driving factors for engineering developments. The outcomes of these efforts are difficult to be accurately monitored due to the ongoing evaluation cycles.
This book presents the outcomes of the International Conference on Intelligent Manufacturing and Automation (ICIMA 2018) organized by the Departments of Mechanical Engineering and Production Engineering at Dwarkadas J. Sanghvi College of Engineering, Mumbai, and the Indian Society of Manufacturing Engineers. It includes original research and the latest advances in the field, focusing on automation, mechatronics and robotics; CAD/CAM/CAE/CIM/FMS in manufacturing; product design and development; DFM/DFA/FMEA; MEMS and Nanotechnology; rapid prototyping; computational techniques; industrial engineering; manufacturing process management; modelling and optimization techniques; CRM, MRP and ERP; green, lean, agile and sustainable manufacturing; logistics and supply chain management; quality assurance and environment protection; advanced material processing and characterization; and composite and smart materials.
The concept of concurrent engineering (CE) was first developed in the 1980s. Now often referred to as transdiciplinary engineering, it is based on the idea that different phases of a product life cycle should be conducted concurrently and initiated as early as possible within the Product Creation Process (PCP). The main goal of CE is to increase the efficiency and effectiveness of the PCP and reduce errors in later phases, as well as incorporating considerations – including environmental implications – for the full lifecycle of the product. It has become a substantive methodology in many industries, and has also been adopted in the development of new services and service support. This book presents the proceedings of the 25th ISPE Inc. International Conference on Transdisciplinary Engineering, held in Modena, Italy, in July 2018. This international conference attracts researchers, industry experts, students, and government representatives interested in recent transdisciplinary engineering research, advancements and applications. The book contains 120 peer-reviewed papers, selected from 259 submissions from all continents of the world, ranging from the theoretical and conceptual to papers addressing industrial best practice, and is divided into 11 sections reflecting the themes addressed in the conference program and addressing topics as diverse as industry 4.0 and smart manufacturing; human-centered design; modeling, simulation and virtual design; and knowledge and data management among others. With an overview of the latest research results, product creation processes and related methodologies, this book will be of interest to researchers, design practitioners and educators alike.
This contributed volume contains the research results of the Cluster of Excellence “Integrative Production Technology for High-Wage Countries”, funded by the German Research Society (DFG). The approach to the topic is genuinely interdisciplinary, covering insights from fields such as engineering, material sciences, economics and social sciences. The book contains coherent deterministic models for integrative product creation chains as well as harmonized cybernetic models of production systems. The content is structured into five sections: Integrative Production Technology, Individualized Production, Virtual Production Systems, Integrated Technologies, Self-Optimizing Production Systems and Collaboration Productivity.The target audience primarily comprises research experts and practitioners in the field of production engineering, but the book may also be beneficial for graduate students.