Download Free Austrian Journal Of Earth Sciences Book in PDF and EPUB Free Download. You can read online Austrian Journal Of Earth Sciences and write the review.

Thermochronology - the use of temperature-sensitive radiometric dating meth-ods to reconstruct the thermal histories of rocks - has proved to be an important means of constraining a wide variety of geological processes. Fission track and (U-Th)/He analyses of apatites, zircons and titanites are the best-established methods for reconstructing such histories over time scales of millions to hun-dreds of millions of years. The papers published in this volume are divided into two sections. The first sec-tion on 'New approaches in thermochronology', presents the most recent ad-vances of existing thermochronological methods and demonstrates the progress in the development of alternative thermochronometers and modelling tech-niques. The second section, 'Applied thermochronology', comprises original papers about denudation, long-term landscape evolution and detrital sources from the European Alps, northwestern Spain, the Ardennes, the Bohemian Massif, Fenno-scandia and Corsica. It also includes case studies from the Siberian Altai, Mozam-bique, South Africa and Dronning Maud Land (East Antarctica) and reports an ancient thermal anomaly within a regional fault in Japan.
Through a remarkable combination of intellect, self-confidence, engaging humility, and prodigious output of published work, William R. Dickinson influenced and challenged three generations of sedimentary geologists, igneous petrologists, tectonicists, sandstone petrologists, archaeologists, and other geoscientists. A key figure in the plate-tectonic revolution of the 1960s and 1970s, he explained how the distribution of sediments on Earth's surface could be traced to tectonic processes, and is widely recognized as a founder of modern sedimentary basin analysis. This volume consists of 31 chapters related to Dickinson's research interests; many of the authors are his former students, their students, and their students' students, demonstrating his continuing profound influence. The papers in this volume are an impressive tribute to the depth and breadth of Bill Dickinson's contributions to the geosciences.
3D DIGITAL GEOLOGICAL MODELS Discover the practical aspects of modeling techniques and their applicability on both terrestrial and extraterrestrial structures A wide overlap exists in the methodologies used by geoscientists working on the Earth and those focused on other planetary bodies in the Solar System. Over the course of a series of sessions at the General Assemblies of the European Geosciences Union in Vienna, the intersection found in 3D characterization and modeling of geological and geomorphological structures for all terrestrial bodies in our solar system revealed that there are similar datasets and common techniques for the study of all planets—Earth and beyond—from a geological point-of-view. By looking at Digital Outcrop Models (DOMs), Digital Elevation Models (DEMs), or Shape Models (SM), researchers may achieve digital representations of outcrops, topographic surfaces, or entire small bodies of the Solar System, like asteroids or comet nuclei. 3D Digital Geological Models: From Terrestrial Outcrops to Planetary Surfaces has two central objectives, to highlight the similarities that geological disciplines have in common when applied to entities in the Solar System, and to encourage interdisciplinary communication and collaboration between different scientific communities. The book particularly focuses on analytical techniques on DOMs, DEMs and SMs that allow for quantitative characterization of outcrops and geomorphological features. It also highlights innovative 3D interpretation and modeling strategies that allow scientists to gain new and more advanced quantitative results on terrestrial and extraterrestrial structures. 3D Digital Geological Models: From Terrestrial Outcrops to Planetary Surfaces readers will also find: The first volume dedicated to this subject matter that successfully integrates methodology and applications A series of methodological chapters that provide instruction on best practices involving DOMs, DEMs, and SMs A wide range of case studies, including small- to large-scale projects on Earth, Mars, the 67P/Churyumov-Gerasimenko comet, and the Moon Examples of how data collected at surface can help reconstruct 3D subsurface models 3D Digital Geological Models: From Terrestrial Outcrops to Planetary Surfaces is a useful reference for academic researchers in earth science, structural geology, geophysics, petroleum geology, remote sensing, geostatistics, and planetary scientists, and graduate students studying in these fields. It will also be of interest for professionals from industry, particularly those in the mining and hydrocarbon fields.
The geological evolution of Central Asia commenced with the formation of a complex Precambrian–Palaeozoic orogen. Cimmerian blocks were then accreted to the southern margin in the Mesozoic, leading to tectonic reactivation of older structures and discrete episodes of basin formation. The Indian and Arabian blocks collided with Asia in the Cenozoic, leading to renewed structural reactivation, intracontinental deformation and basin development. This complex evolution resulted in the present-day setting of an elongated Tien Shan range flanked by large Mesozoic–Cenozoic sedimentary basins with smaller intramontane basins distributed within the range. This volume presents multidisciplinary results and reviews from research groups in Europe and Central Asia that focus on the western part of the Tien Shan and some of the adjacent large sedimentary basins. These works elucidate the Late Palaeozoic–Cenozoic tectono-sedimentary evolution of the area. Emphasis is given to the collision of terranes and continents and the ensuing fault reactivations. The impact of climatic changes on sedimentation is also examined.
European Glacial Landscapes: The Holocene presents the current state of knowledge on glacial landscapes of Europe and nearby areas over the Holocene to deduce the influence of atmospheric and oceanic currents and the insolation forcing variability and volcanic activity on Holocene paleoclimates, the existence of asynchronies in the timing of occurrence of glacier expansion and shrinkage during the Holocene, time lags between the identification of oceanic and atmospheric changes and those occurring in glacial extension during the Holocene, the role of Holocene glaciers on the climate of Europe, and on sea level variability, and the delimitation of landscapes that need special protection. Students, academics and researchers in Geography, Geology, Environmental Sciences, Physics and Earth Science departments will find this book provides novel findings of all the major European Regions in a single publication, with updated information about Holocene glacial geomorphology and paleo-climatology and clear figures that model the landscapes covered. - Provides a synthesis and summary of glacial processes in Europe over the Holocene period - Features research from experts in palaeo-climatology, palaeo-oceanography and palaeo-glaciology - Includes access to a companion website with an interactive map, photos of glacial features, and geospatial data related to European Glacial Landscapes
Sea-level constitutes a critical planetary boundary for geological processes and human life. Sea-level fluctuations during major greenhouse phases are still enigmatic and strongly discussed in terms of changing climate systems. The geological record of the Cretaceous greenhouse period provides a deep-time view on greenhouse-phase Earthsystem processes that facilitates a much better understanding of the causes and consequences of global, geologically short-term, sea-level changes. In particualr, Cretaceous hothouse periods can serve as a laboratory to better understand a near-future greenhouse Earth. This volume presents high-resolution sea-level records from globally distributed sedimentary archives of the Cretaceous involving a large group of scientists from the International Geoscience Programme IGCP 609. Marine to non-marine sedimentary successions were analysed for revised age constraints, the correlation of global palaeoclimate shifts and sea-level changes, tested for climate-driven cyclicities, and correlated within a high-resolution stratigraphic framework of the Geological Timescale. For hothouse periods, the hypothesis of significant global groundwater-related sea-level change, i.e. aquifer-eustasy as a major process, is reviewed and substantiated.
Isotopic studies combined with geochemical, lithological, mineralogical and palaeontological investigations have been widely used in reconstructing Cretaceous marine and continental environments. Furthermore stable and radiogenic isotope trends play an important role in the interpretation of the causes and consequences of biotic turnovers at stratigraphic boundaries as well as in global correlations.
The term tectonics refers to the study dealing with the forces and displacements that have operated to create structures within the lithosphere. The deformations affecting the Earth's crust are result of the release and the redistribution of energy from Earth's core. The concept of plate tectonics is the chief working principle. Tectonics has application to lunar and planetary studies, whether or not those bodies have active tectonic plate systems. Petroleum and mineral prospecting uses this branch of knowledge as guide. The present book is restricted to the structure and evolution of the terrestrial lithosphere with dominant emphasis on the continents. Thirteen original scientific contributions highlight most recent developments in seven relevant domains: Gondwana history, the tectonics of Europe and the Near East; the tectonics of Siberia; the tectonics of China and its neighbourhood; advanced concepts on plate tectonics are discussed in two articles; in the frame of neotectonics, two investigation techniques are examined; finally, the relation between tectonics and petroleum researches is illustrated in one chapter.