Download Free Atomic Radiative Processes Book in PDF and EPUB Free Download. You can read online Atomic Radiative Processes and write the review.

Radiative Processes in Astrophysics: This clear, straightforward, and fundamental introduction is designed to present-from a physicist's point of view-radiation processes and their applications to astrophysical phenomena and space science. It covers such topics as radiative transfer theory, relativistic covariance and kinematics, bremsstrahlung radiation, synchrotron radiation, Compton scattering, some plasma effects, and radiative transitions in atoms. Discussion begins with first principles, physically motivating and deriving all results rather than merely presenting finished formulae. However, a reasonably good physics background (introductory quantum mechanics, intermediate electromagnetic theory, special relativity, and some statistical mechanics) is required. Much of this prerequisite material is provided by brief reviews, making the book a self-contained reference for workers in the field as well as the ideal text for senior or first-year graduate students of astronomy, astrophysics, and related physics courses. Radiative Processes in Astrophysics also contains about 75 problems, with solutions, illustrating applications of the material and methods for calculating results. This important and integral section emphasizes physical intuition by presenting important results that are used throughout the main text; it is here that most of the practical astrophysical applications become apparent.
Plasmas comprise more than 99% of the observable universe. They are important in many technologies and are key potential sources for fusion power. Atomic and radiation physics is critical for the diagnosis, observation and simulation of astrophysical and laboratory plasmas, and plasma physicists working in a range of areas from astrophysics, magnetic fusion, and inertial fusion utilise atomic and radiation physics to interpret measurements. This text develops the physics of emission, absorption and interaction of light in astrophysics and in laboratory plasmas from first principles using the physics of various fields of study including quantum mechanics, electricity and magnetism, and statistical physics. Linking undergraduate level atomic and radiation physics with the advanced material required for postgraduate study and research, this text adopts a highly pedagogical approach and includes numerous exercises within each chapter for students to reinforce their understanding of the key concepts.
This book offers advanced students and researchers an up-to-date quantum treatment of the interaction of atoms with electromagnetic radiation. Problems and solutions are used to develop concepts, terminology, and the principal results of the quantum theory of radiative processes in atoms. Concepts covered include: radiative transitions between discrete states in atomic systems, atomic photoprocesses involving free particles, coherent phenomena in radiative transitions, extensive treatment of line-broadening mechanisms, atoms in strong fields and theory of angular momentum.
This book describes selected problems in contemporary spectroscopy in the context of quantum mechanics and statistical physics. It focuses on elementary radiative processes involving atomic particles (atoms, molecules, ions), which include radiative transitions between discrete atomic states, the photoionization of atoms, photorecombination of electrons and ions, bremsstrahlung, photodissociation of molecules, and photoattachment of electrons to atoms. In addition to these processes, the transport of resonant radiation in atomic gases and propagation of infrared radiation in molecular gases are also considered. The book subsequently addresses applied problems such as optical pumping, cooling of gases via laser resonance radiation, light-induced drift of gas atoms, photoresonant plasma, reflection of radio waves from the ionosphere, and detection of submillimeter radiation using Rydberg atoms. Lastly, topical examples in atmospheric and climate change science are presented, such as lightning channel glowing, emission of the solar photosphere, and the greenhouse phenomenon in the atmospheres of the Earth and Venus. Along with researchers, both graduate and undergraduate students in atomic, molecular and atmospheric physics will find this book a useful and timely guide.
Radiation can be absorbed and re-emitted many times in atomic vapors before it reaches the boundaries of the container encasing the vapor. This effect is known as radiation trapping. It plays an important role practically everywhere atomic vapors occur, whether in spectroscopy, gas lasers, atomic line filters, the determination of atomic lifetimes, measurements of atomic interaction potentials, or electric discharge lamps. This book is the first to assemble all of the information necessary to handle practical problems related to radiation trapping, and it emphasizes both physical insights and mathematical methods. The introduction reviews resonance radiation and collision processes in atomic vapors. This is followed by detailed explanations of the physical effects and mathematical methods for various types of problems (e.g., with or without saturation, particle diffusion, reflecting cell walls). The last part of the book describes the applications of these methods to a variety of practical problems, such as cross-section measurements and the design of discharge lamps.
This volume reviews all aspects of Mars atmospheric science from the surface to space, and from now and into the past.
Physical Processes in Radiation Biology covers the proceedings of an International Symposium on Physical Processes in Radiation Biology, held at the Kellogg Center for Continuing Education, Michigan State University on May 6-8, 1963, sponsored by the U.S. Atomic Energy Commission. The symposium aims to address the core problems of radiation biology concerning the absorption, distribution, and utilization of high energy packets in biological systems. This book is composed of 21 chapters, and begins with an introduction to the absorption, excitation, and transfer processes in molecular solids. The subsequent chapters discuss the nature of exciton processes; the mechanisms of charge transport in biological materials; the interactions of fast and slow electrons with model systems; the importance of liquid structures in determining the development of radiation damage; and the nature of the metastable species formed. The concluding chapters explore the importance of charge migration in energy transfer processes in different biological systems and the significance of higher excited levels in charge migration and energy transfer. These chapters also describe the nature of the hydration of electrons and protons in aqueous systems. This book will be of great value to radiation biologists, biophysicists, physical chemists, and physicists.
Atom-Photon Interactions: Basic Processes and Applications allows the reader to master various aspects of the physics of the interaction between light and matter. It is devoted to the study of the interactions between photons and atoms in atomic and molecular physics, quantum optics, and laser physics. The elementary processes in which photons are emitted, absorbed, scattered, or exchanged between atoms are treated in detail and described using diagrammatic representation. The book presents different theoretical approaches, including: Perturbative methods The resolvent method Use of the master equation The Langevin equation The optical Bloch equations The dressed-atom approach Each method is presented in a self-contained manner so that it may be studied independently. Many applications of these approaches to simple and important physical phenomena are given to illustrate the potential and limitations of each method.
This book provides a compact yet comprehensive overview of recent developments in collisional-radiative (CR) modeling of laboratory and astrophysical plasmas. It describes advances across the entire field, from basic considerations of model completeness to validation and verification of CR models to calculation of plasma kinetic characteristics and spectra in diverse plasmas. Various approaches to CR modeling are presented, together with numerous examples of applications. A number of important topics, such as atomic models for CR modeling, atomic data and its availability and quality, radiation transport, non-Maxwellian effects on plasma emission, ionization potential lowering, and verification and validation of CR models, are thoroughly addressed. Strong emphasis is placed on the most recent developments in the field, such as XFEL spectroscopy. Written by leading international research scientists from a number of key laboratories, the book offers a timely summary of the most recent progress in this area. It will be a useful and practical guide for students and experienced researchers working in plasma spectroscopy, spectra simulations, and related fields.