Download Free Atmospheric Oxidation Of Selected Hydrocarbons Book in PDF and EPUB Free Download. You can read online Atmospheric Oxidation Of Selected Hydrocarbons and write the review.

The vast family of volatile organic compounds plays a central role in the chemistry of the Earth's atmosphere. Reactive Hydrocarbons in the Atmosphere provides comprehensive and up-to-date reviews covering all aspects of the behavior, sources, occurrence, and chemistry of these compounds. The book considers both biogenic and anthropogenic sources, plus their effects in the atmosphere at local, regional, and global scales. - Covers a major component of atmospheric chemistry and air pollution - Considers both natural background chemistry and pollution processes - Provides authoritative reviews for a wide range of audiences
Every day, large quantities of volatile organic compounds (VOCs) are emitted into the atmosphere from both anthropogenic and natural sources. The formation of gaseous and particulate secondary products caused by oxidation of VOCs is one of the largest unknowns in the quantitative prediction of the earth’s climate on a regional and global scale, and on the understanding of local air quality. To be able to model and control their impact, it is essential to understand the sources of VOCs, their distribution in the atmosphere and the chemical transformations which remove these compounds from the atmosphere. In recent years techniques for the analysis of organic compounds in the atmosphere have been developed to increase the spectrum of detectable compounds and their detection limits. New methods have been introduced to increase the time resolution of those measurements and to resolve more complex mixtures of organic compounds. Volatile Organic Compounds in the Atmosphere describes the current state of knowledge of the chemistry of VOCs as well as the methods and techniques to analyse gaseous and particulate organic compounds in the atmosphere. The aim is to provide an authoritative review to address the needs of both graduate students and active researchers in the field of atmospheric chemistry research.
This text reviews many of the aspects of the chemistry of the aromatic hydrocarbons and a consensus evaluation of the data by seven of the leading atmospheric scientists. The book covers topics ranging from the relative importance of the compounds in ozone and haze development to methods of estimating elemantary rate coefficients based on structural features of the compounds to mechanisms of aerosol generation and atmostpheric reaction of the polycyclic compounds to photochemical processes. It identifies features of the aromatic hydrocarbons requiring further study and appendicies give the structural formulas and nomenclature of the compounds reviewed in the book.
Atmospheric Chemistry is a comprehensive treatment of atmospheric chemistry and covers topics ranging from the structure of the atmosphere to the chemistry of the upper atmosphere and the ionosphere. Atmospheric pollutants, hydrocarbon oxidation, and photochemical smog are also discussed, along with the reactions of O8 and singlet O2, the chemistry of SO2 and aerosols, and methods for controlling atmospheric pollution. This book is comprised of 10 chapters and begins with an overview of the composition and chemistry of the atmosphere as well as its physical characteristics and the chemistry of meteors. The next two chapters deal with the chemistry of the upper atmosphere and the ionosphere, with emphasis on neutral oxygen atmosphere, carbon-hydrogen-oxygen cycle, and the D region. The chemistry of atmospheric pollutants is also examined, along with hydrocarbon oxidation and photochemical smog. The remaining chapters focus on the reactions of O8 and singlet O2, the chemistry of SO2 and aerosols, and methods for controlling atmospheric pollution. This monograph should be useful to graduate students and scientists who wish to study atmospheric chemistry.
Prepared by an international team of eminent atmospheric scientists, Mechanisms of Atmospheric Oxidation of the Oxygenates is an authoritative source of information on the role of oxygenates in the chemistry of the atmosphere. The oxygenates, including the many different alcohols, ethers, aldehydes, ketones, acids, esters, and nitrogen-atom containing oxygenates, are of special interest today due to their increased use as alternative fuels and fuel additives. This book describes the physical properties of oxygenates, as well as the chemical and photochemical parameters that determine their reaction pathways in the atmosphere. Quantitative descriptions of the pathways of the oxygenates from release or formation in the atmosphere to final products are provided, as is a comprehensive review and evaluation of the extensive kinetic literature on the atmospheric chemistry of the different oxygenates and their many halogen-atom substituted analogues. This book will be of interest to modelers of atmospheric chemistry, environmental scientists and engineers, and air quality planning agencies as a useful input for development of realistic modules designed to simulate the atmospheric chemistry of the oxygenates, their major oxidation products, and their influence on ozone and other trace gases within the troposhere.
The Committee on Ozone-Forming Potential for Reformulated Gasoline was asked whether the existing body of scientific and technical information is sufficient to permit a robust evaluation and comparison of the emissions from motor vehicles using different reformulated gasolines based on their ozone-forming potentials and to assess the concomitant impact of that approach on air-quality benefits of the use of oxygenates within the RFG program. As part of its charge, the committee was asked to consider (1) the technical soundness of various approaches for evaluating and comparing the relative ozone-forming potentials of RFG blends, (2) technical aspects of various air-quality issues related to RFG assessment, and (3) the sensitivity of evaluations of the relative ozone-forming potentials to factors related to fuel properties and the variability of vehicle technologies and driving patterns.
Alkenes and Aromatics examines the reaction mechanisms associated with carbon-carbon double bonds, and then goes on to look at aromatic substitution (nitration, halogenation, sulfonation and Friedel Crafts reactions). The formation and reactions of diazonium ions are also discussed. This knowledge is then applied to the synthesis of pseudoephedrine, highlighting the key aspects of synthesis, such as yields, stereochemistry and reaction conditions. A Case Study on the organic chemical industry completes the book, providing a background as to why understanding organic reactions is so important. The Molecular World series provides an integrated introduction to all branches of chemistry for both students wishing to specialise and those wishing to gain a broad understanding of chemistry and its relevance to the everyday world and to other areas of science. The books, with their Case Studies and accompanying multi-media interactive CD-ROMs, will also provide valuable resource material for teachers and lecturers. (The CD-ROMs are designed for use on a PC running Windows 95, 98, ME or 2000.)