Download Free Atmospheric And Oceanic Optics Book in PDF and EPUB Free Download. You can read online Atmospheric And Oceanic Optics and write the review.

The book describes the theoretical fundamentals of atmospheric optics as a science of propagation, transformation and generation of electromagnetic radiation in the atmosphere from ultraviolet to microwave radiation. The main characteristics of the planets of the solar system and their atmospheres are given. The equation of the transfer of radiation in different spectral ranges, absorption of radiation by atmospheric gases and aerosol, molecular, aerosol and other types of nonresonant scattering, atmospheric refraction, reflection of radiation from the surface, and glow of the atmosphere are discussed. Methods of calculating radiation for the solar and thermal range of the spectrum are outlined. Problems of radiation energetics and remote probing of the atmosphere are discussed. 1. Solar system: planets and the Sun 2. Earth's atmosphere 3. Propagation of radiation in atmosphere 4. Molecular absorption in atmosphere 5. Scattering of light in atmosphere 6. Optical properties of underlying surfaces 7. Fundamentals of theory of transfer of natural radiation of atmosphere 8. Main concepts of theory of transfer of solar radiation 9. Radiation energetics of the atmosphereunderlying suface system 10. Radiation as a source of information on optical and physical parameters of planet atmospheres
This is a modern, introductory textbook on the dynamics of the atmosphere and ocean, with a healthy dose of geophysical fluid dynamics. It will be invaluable for intermediate to advanced undergraduate and graduate students in meteorology, oceanography, mathematics, and physics. It is unique in taking the reader from very basic concepts to the forefront of research. It also forms an excellent refresher for researchers in atmospheric science and oceanography. It differs from other books at this level in both style and content: as well as very basic material it includes some elementary introductions to more advanced topics. The advanced sections can easily be omitted for a more introductory course, as they are clearly marked in the text. Readers who wish to explore these topics in more detail can refer to this book's parent, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, now in its second edition.
Since the publication of Jerlov's classic volume on optical oceanography in 1968, the ability to predict or model the submarine light field, given measurements of the inherent optical properties of the ocean, has improved to the point that model fields are very close to measured fields. In the last three decades, remote sensing capabilities have fostered powerful models that can be inverted to estimate the inherent optical properties closely related to substances important for understanding global biological productivity, environmental quality, and most nearshore geophysical processes. This volume presents an eclectic blend of information on the theories, experiments, and instrumentation that now characterize the ways in which optical oceanography is studied. Through the course of this interdisciplinary work, the reader is led from the physical concepts of radiative transfer to the experimental techniques used in the lab and at sea, to process-oriented discussions of the biochemical mechanisms responsible for oceanic optical variability. The text will be of interest to researchers and students in physical and biological oceanography, biology, geophysics, limnology, atmospheric optics, and remote sensing of ocean and global climate change.
The exclusive role of natural ecosystems is a key factor in the maintenance of the biospheric equilibrium. The current global crisis is largely caused by their dramatic decline by 43% in the past hundred years. Ignoring the immutable laws and limitations which determine the existence of all living things in the biosphere could lead humanity to an ecological catastrophe. This book presents the ecological, demographic, economic and socio-psychological manifestations of the global crisis and outlines the immutable laws and limitations which determine the existence of all living things in the biosphere. The authors are eminently qualified to write about the problems associated with the global crisis and consider the causes behind humanity's conflict with its environment. V. Danilov-Danilian, Associate of the Russian Academy of Sciences and Russia's former Minister of the Environment, and K. Losev, professor at Moscow State university, are leading Russian ecologists and I. Reyf is a journalist who specializes in ecology and global development. Dr. Danilov-Danilian works on the economics of nature management, economic and mathematical model building, sustainable development theory and ecology. Dr Losev is the chief researcher and head of the division of the VINITI. All the authors have published numerous papers, articles and books on such subjects as glaciology, hydrology, environment studies, global change and sustainable development.
The book introduces optical wave propagation in the irregular turbulent atmosphere and the relations to laser beam and LIDAR applications for both optical communication and imaging. It examines atmosphere fundamentals, structure, and content. It explains specific situations occurring in the irregular atmosphere and for specific natural phenomena that affect optical ray and laser beam propagation. It emphasizes how to use LIDAR to investigate atmospheric phenomena and predict primary parameters of the irregular turbulent atmosphere and suggests what kinds of optical devices to operate in different atmospheric situations to minimize the deleterious effects of natural atmospheric phenomena.
This volume offers a treatment of radiative transfer theory in a format tailored to the specific needs of optical oceanography, with applications to real problems. It develops the basic theory and reviews the current literature. Numerical methods for solving radiative transfer equations are then detailed, with equations describing transpectral effects, internal surfaces, and surface effects. Equations governing the propagation of visible light across air-water surfaces and within water bodies are also explained.