Download Free Atlas Of Point Contact Spectra Of Electron Phonon Interactions In Metals Book in PDF and EPUB Free Download. You can read online Atlas Of Point Contact Spectra Of Electron Phonon Interactions In Metals and write the review.

The characteristics of electrical contacts have long attracted the attention of researchers since these contacts are used in every electrical and electronic device. Earlier studies generally considered electrical contacts of large dimensions, having regions of current concentration with diameters substantially larger than the characteristic dimensions of the material: the interatomic distance, the mean free path for electrons, the coherence length in the superconducting state, etc. [110]. The development of microelectronics presented to scientists and engineers the task of studying the characteristics of electrical contacts with ultra-small dimensions. Characteristics of point contacts such as mechanical stability under continuous current loads, the magnitudes of electrical fluctuations, inherent sensitivity in radio devices and nonlinear characteristics in connection with electromagnetic radiation can not be understood and altered in the required way without knowledge of the physical processes occurring in contacts. Until recently it was thought that the electrical conductivity of contacts with direct conductance (without tunneling or semiconducting barriers) obeyed Ohm's law. Nonlinearities of the current-voltage characteristics were explained by joule heating of the metal in the region of the contact. However, studies of the current-voltage characteristics of metallic point contacts at low (liquid helium) temperatures [142] showed that heating effects were negligible in many cases and the nonlinear characteristics under these conditions were observed to take the form of the energy dependent probability of inelastic electron scattering, induced by various mechanisms.
Mesoscopic superconductors achieve a level of smallness that reveals the dominance of strange quantum effects. In a world driven by the miniaturization of electronic device technology, small superconductors acquire great relevance and timeliness for the development of ground breaking novel quantum devices.
The NATO Advanced Research Workshop took place from 29 May to I June 2000 in the picturesque Hungarian town of Pecs, 220 km south of Budapest. The main goal of the workshop was to review and promote experimental and theoretical research on the problem of Kondo-type scatteringofthe electrons in systems ofreduced dimensionalities. 53 regular participants and 7 observers from 17 different countries attended the workshop. The Kondo effect has been a topic ofintense interest for many years, due in part to its relevance to a variety of other branches of condensed matter physics. In addition to the best known example of magnetic impurities in noble metals, the physics of the Kondo effect is important in many areas of current research, including heavy-fermion physics, correlated electron systems, and high-temperature superconductivity. Of central importance in this problem is the interaction of conduction electrons in the metal with individual magnetic impurities, an interaction which also mediates the interaction ofthe impurities with each other.
Volatile organic compounds (VOCs) in exhaled breath, sweat or urine carry much information on the state of human health. The role of VOCs in clinical diagnosis and therapeutic monitoring is expected to become increasingly significant due to recent advances in the field. Volatile Biomarkers: Non-Invasive Diagnosis in Physiology and Medicine includes the latest discoveries and applications for VOCs from the world's foremost scientists and clinicians working in this emerging analytic area. - Appeals to a multidisciplinary audience, including scientists, researchers, and clinicians with an interest in breath analysis - Features the latest scientific research and technical breakthroughs in the diagnostic and therapeutic aspects of volatile organic compounds - Includes case presentations documenting applications in multiple areas of human health and safety
Various experimental techniques for point contact production are described. Examples of point-contact spectra are presented for pure metals, alloys and compounds, as well as for semimetals and semiconductors, heavy fermion systems, Kond-lattices, mixed valence compounds and more. Superconducting point contacts are considered in respect to Andreev reflection and Josephson effects. Special attention is paid to contact conductance fluctuation, and new trends of research are outlined.
This book highlights some of the latest advances in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe and beyond. It features contributions presented at the 7th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2019), which was held on August 27–30, 2019 at Lviv Polytechnic National University, and was jointly organized by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key findings on material properties, behavior, and synthesis. This book’s companion volume also addresses topics such as nano-optics, energy storage, and biomedical applications.