Download Free Atlas Of Human Pluripotent Stem Cells Book in PDF and EPUB Free Download. You can read online Atlas Of Human Pluripotent Stem Cells and write the review.

This lavishly-illustrated, authoritative atlas explores the intricate art of culturing human pluripotent stem cells. Twelve chapters – containing more than 280 color illustrations – cover a variety of topics in pluripotent stem cell culturing including mouse and human fibroblasts, human embryonic stem cells and induced pluripotent stem cells, characteristic staining patterns, and abnormal cultures, among others. Atlas of Human Pluripotent Stem Cells in Culture is a comprehensive collection of illustrated techniques complemented by informative and educational captions examining what good quality cells look like and how they behave in various environments. Examples of perfect cultures are compared side-by-side to less-than-perfect and unacceptable examples of human embryonic and induced pluripotent stem cell colonies. This detailed and thorough atlas is an invaluable resource for researchers, teachers, and students who are interested in or working with stem cell culturing.
This comprehensive atlas offers step-by-step guidance for the derivation and culturing of human pluripotent stem cells in defined conditions and in non-adhesion suspension culture, as well as methods for examining pluripotency and karyotype stability.
Human pluripotent stem cells, including human embryonic stem cells and induced pluripotent stem cells, are a key focus of current biomedical research. The emergence of state of the art culturing techniques is promoting the realization of the full potential of pluripotent stem cells in basic and translational research and in cell-based therapies. This comprehensive and authoritative atlas summarizes more than a decade of experience accumulated by a leading research team in this field. Hands-on step-by-step guidance for the derivation and culturing of human pluripotent stem cells in defined conditions (animal product-free, serum-free, feeder-free) and in non-adhesion suspension culture are provided, as well as methods for examining pluripotency (embryoid body and teratoma formation) and karyotype stability. The Atlas of Human Pluripotent Stem Cells - Derivation and Culturing will serve as a reference and guide to established researchers and those wishing to enter the promising field of pluripotent stem cells.
A discussion of all the key issues in the use of human pluripotent stem cells for treating degenerative diseases or for replacing tissues lost from trauma. On the practical side, the topics range from the problems of deriving human embryonic stem cells and driving their differentiation along specific lineages, regulating their development into mature cells, and bringing stem cell therapy to clinical trials. Regulatory issues are addressed in discussions of the ethical debate surrounding the derivation of human embryonic stem cells and the current policies governing their use in the United States and abroad, including the rules and conditions regulating federal funding and questions of intellectual property.
Since the first successful isolation and cultivation of human embryonic stem cells at the University of Wisconsin, Madison in 1998, there has been high levels of both interest and controversy in this area of research. This book provides a concise overview of an exciting field, covering the characteristics of both human embryonic stem cells and pluripotent stem cells from other human cell lineages. The following chapters describe state-of-the-art differentiation and characterization of specific ectoderm, mesoderm and endoderm-derived lineages from human embryonic stem cells, emphasizing how these can be used to study human developmental mechanisms. A further chapter discusses genetic manipulation of human ES cells. The concluding section covers therapeutic applications of human ES cells, as well as addressing the ethical and legal issues that this research have raised.
Practical and concise, this guide addresses clinical and experimental hematologists, technicians and teachers interested in human hematopoietic stem cells. Offering a unique collection of photographs taken at steady reproducible culture conditions by a hematologist with extensive clinical and experimental experience, it fills a gap in the current hematology literature.
Most organs in the adult human body are able to maintain themselves and undergo repair after injury; these processes are largely dependent on stem cells. In this Monograph, the Guest Editors bring together leading authors in the field to provide information about the different classes of stem cells present both in the developing and adult lung: where they are found, how they function in homeostasis and pathologic conditions, the mechanisms that regulate their behaviour, and how they may be harnessed for therapeutic purposes. The book focuses on stem cells in the mouse and human lung but also includes the ferret as an increasingly important new model organism. Chapters also discuss how lung tissue, including endogenous stem cells, can be generated in vitro from pluripotent stem cell lines. This state-of-the-art collection comprehensively covers one of the most exciting areas of respiratory science
The Mouse Nervous System provides a comprehensive account of the central nervous system of the mouse. The book is aimed at molecular biologists who need a book that introduces them to the anatomy of the mouse brain and spinal cord, but also takes them into the relevant details of development and organization of the area they have chosen to study. The Mouse Nervous System offers a wealth of new information for experienced anatomists who work on mice. The book serves as a valuable resource for researchers and graduate students in neuroscience. Systematic consideration of the anatomy and connections of all regions of the brain and spinal cord by the authors of the most cited rodent brain atlases A major section (12 chapters) on functional systems related to motor control, sensation, and behavioral and emotional states A detailed analysis of gene expression during development of the forebrain by Luis Puelles, the leading researcher in this area Full coverage of the role of gene expression during development and the new field of genetic neuroanatomy using site-specific recombinases Examples of the use of mouse models in the study of neurological illness
Progression of chronic diseases in general and chronic kidney disease in particular has been traditionally viewed in the light of various contributors to development of glomerulosclerosis and tubulointerstitial scarring culminating in renal fibrosis. Indeed, this dogma prevailed for decades underscoring experimental attempts to halt fibrotic processes. Breakthrough investigations of the past few years on stem/progenitor cell involvement in organ regeneration caused a conceptual shift in tackling the mechanisms of nephrosclerosis. It has become clear that the rate of progression of chronic kidney disease is the net sum of the opposing trends: degenerative fibrotic processes and regenerative repair mechanisms. The latter part of this equation has been by and large ignored for years and only recently attracted investigative attention. This book revisits the problem of kidney disease by focusing on regenerative mechanisms in renal repair and on the ways these regenerative processes can become subverted by an intrinsic disease process eventuating in its progression. Cutting-edge investigations are summarized by the most experienced international team of experts. - Presents a comprehensive, translational source for all aspects of renal stem cells, tissue regeneration, and stem cell therapies for renal diseases in one reference work. This will ultimately result in time savings for academic, medical and pharma researchers - Experts in the renal stem cell system in kidney repair and regeneration take readers from the bench research to new therapeutic approaches, providing a common language for nephrology researchers, fellows and other stem cell researchers. This enables the discussion of development of stem cells and their use in the repair and regeneration of the kidney
This reference work presents the origins of cells for tissue engineering and regeneration, including primary cells, tissue-specific stem cells, pluripotent stem cells and trans-differentiated or reprogrammed cells. There is particular emphasis on current understanding of tissue regeneration based on embryology and evolution studies, including mechanisms of amphibian regeneration. The book covers the use of autologous versus allogeneic cell sources, as well as various procedures used for cell isolation and cell pre-conditioning , such as cell sorting, biochemical and biophysical pre-conditioning, transfection and aggregation. It also presents cell modulation using growth factors, molecular factors, epigenetic approaches, changes in biophysical environment, cellular co-culture and other elements of the cellular microenvironment. The pathways of cell delivery are discussed with respect to specific clinical situations, including delivery of ex vivo manipulated cells via local and systemic routes, as well as activation and migration of endogenous reservoirs of reparative cells. The volume concludes with an in-depth discussion of the tracking of cells in vivo and their various regenerative activities inside the body, including differentiation, new tissue formation and actions on other cells by direct cell-to-cell communication and by secretion of biomolecules.