Download Free Asymptotic Solutions Of A Linear Second Order Differential Equation With Two Turning Points Book in PDF and EPUB Free Download. You can read online Asymptotic Solutions Of A Linear Second Order Differential Equation With Two Turning Points and write the review.

This outstanding text concentrates on the mathematical ideas underlying various asymptotic methods for ordinary differential equations that lead to full, infinite expansions. "A book of great value." — Mathematical Reviews. 1976 revised edition.
My book "Asymptotic Expansions for Ordinary Differential Equations" published in 1965 is out of print. In the almost 20 years since then, the subject has grown so much in breadth and in depth that an account of the present state of knowledge of all the topics discussed there could not be fitted into one volume without resorting to an excessively terse style of writing. Instead of undertaking such a task, I have concentrated, in this exposi tion, on the aspects of the asymptotic theory with which I have been particularly concerned during those 20 years, which is the nature and structure of turning points. As in Chapter VIII of my previous book, only linear analytic differential equations are considered, but the inclusion of important new ideas and results, as well as the development of the neces sary background material have made this an exposition of book length. The formal theory of linear analytic differential equations without a parameter near singularities with respect to the independent variable has, in recent years, been greatly deepened by bringing to it methods of modern algebra and topology. It is very probable that many of these ideas could also be applied to the problems concerning singularities with respect to a parameter, and I hope that this will be done in the near future. It is less likely, however, that the analytic, as opposed to the formal, aspects of turning point theory will greatly benefit from such an algebraization.
Asymptotics are built for the solutions $y_j(x, \lambda)$, $y_j DEGREES{(k)}(0, \lambda)=\delta_{j\, n-k}$, $0\le j, k+1\le n$ of the equation $L(y)=\lambda p(x)y, \quad x\in [0,1], $ where $L(y)$ is a linear differential operator of whatever order $n\ge 2$ and $p(x)$ is assumed to possess a finite number of turning points. The established asymptotics are afterwards applied to the study of: 1) the existence of infinite eigenvalue sequences for various multipoint boundary problems posed on $L(y)=\lambda p(x)y, \quad x\in [0,1], $, especially as $n=2$ and $n=3$ (let us be aware that the same method can be successfully applied on many occasions in case $n>3$ too) and 2) asymptotical distribution of the corresponding eigenvalue sequences on the
Mathematics Research Center Symposia and Advanced Seminar Series: Singular Perturbations and Asymptotics covers the lectures presented at an Advanced Seminar on Singular Perturbation and Asymptotics, held in Madison, Wisconsin on May 28-30, 1980 under the auspices of the Mathematics Research Center of the University of Wisconsin—Madison. The book focuses on the processes, methodologies, reactions, and principles involved in singular perturbations and asymptotics, including boundary value problems, equations, perturbations, water waves, and gas dynamics. The selection first elaborates on basic concepts in the analysis of singular perturbations, limit process expansions and approximate equations, and results on singularly perturbed boundary value problems. Discussions focus on quasi-linear and nonlinear problems, semilinear systems, water waves, expansion in gas dynamics, asymptotic matching principles, and classical perturbation analysis. The text then takes a look at multiple solutions of singularly perturbed systems in the conditionally stable case and singular perturbations, stochastic differential equations, and applications. The book ponders on connection problems in the parameterless case; general connection-formula problem for linear differential equations of the second order; and turning-point problems for ordinary differential equations of hydrodynamic type. Topics include the comparison equation method, boundary layer flows, compound matrix method, asymptotic solution of the connection-formula problem, and higher order equations. The selection is a valuable source of information for researchers interested in singular perturbations and asymptotics.
A classic reference, intended for graduate students mathematicians, physicists, and engineers, this book can be used both as the basis for instructional courses and as a reference tool.
In the last few decades the theory of ordinary differential equations has grown rapidly under the action of forces which have been working both from within and without: from within, as a development and deepen ing of the concepts and of the topological and analytical methods brought about by LYAPUNOV, POINCARE, BENDIXSON, and a few others at the turn of the century; from without, in the wake of the technological development, particularly in communications, servomechanisms, auto matic controls, and electronics. The early research of the authors just mentioned lay in challenging problems of astronomy, but the line of thought thus produced found the most impressive applications in the new fields. The body of research now accumulated is overwhelming, and many books and reports have appeared on one or another of the multiple aspects of the new line of research which some authors call "qualitative theory of differential equations". The purpose of the present volume is to present many of the view points and questions in a readable short report for which completeness is not claimed. The bibliographical notes in each section are intended to be a guide to more detailed expositions and to the original papers. Some traditional topics such as the Sturm comparison theory have been omitted. Also excluded were all those papers, dealing with special differential equations motivated by and intended for the applications.