Download Free Asymptotic Optimal Inference For Non Ergodic Models Book in PDF and EPUB Free Download. You can read online Asymptotic Optimal Inference For Non Ergodic Models and write the review.

This monograph contains a comprehensive account of the recent work of the authors and other workers on large sample optimal inference for non-ergodic models. The non-ergodic family of models can be viewed as an extension of the usual Fisher-Rao model for asymptotics, referred to here as an ergodic family. The main feature of a non-ergodic model is that the sample Fisher information, appropriately normed, converges to a non-degenerate random variable rather than to a constant. Mixture experiments, growth models such as birth processes, branching processes, etc. , and non-stationary diffusion processes are typical examples of non-ergodic models for which the usual asymptotics and the efficiency criteria of the Fisher-Rao-Wald type are not directly applicable. The new model necessitates a thorough review of both technical and qualitative aspects of the asymptotic theory. The general model studied includes both ergodic and non-ergodic families even though we emphasise applications of the latter type. The plan to write the monograph originally evolved through a series of lectures given by the first author in a graduate seminar course at Cornell University during the fall of 1978, and by the second author at the University of Munich during the fall of 1979. Further work during 1979-1981 on the topic has resolved many of the outstanding conceptual and technical difficulties encountered previously. While there are still some gaps remaining, it appears that the mainstream development in the area has now taken a more definite shape.
This book, dedicated to Winfried Stute on the occasion of his 70th birthday, presents a unique collection of contributions by leading experts in statistics, stochastic processes, mathematical finance and insurance. The individual chapters cover a wide variety of topics ranging from nonparametric estimation, regression modelling and asymptotic bounds for estimators, to shot-noise processes in finance, option pricing and volatility modelling. The book also features review articles, e.g. on survival analysis.
Models and likelihood are the backbone of modern statistics. This 2003 book gives an integrated development of these topics that blends theory and practice, intended for advanced undergraduate and graduate students, researchers and practitioners. Its breadth is unrivaled, with sections on survival analysis, missing data, Markov chains, Markov random fields, point processes, graphical models, simulation and Markov chain Monte Carlo, estimating functions, asymptotic approximations, local likelihood and spline regressions as well as on more standard topics such as likelihood and linear and generalized linear models. Each chapter contains a wide range of problems and exercises. Practicals in the S language designed to build computing and data analysis skills, and a library of data sets to accompany the book, are available over the Web.
The present volume consists of papers written by students, colleagues and collaborators of Sreenivasa Rao Jammalamadaka from various countries, and covers a variety of research topics which he enjoys and contributed immensely to.
Comprises the proceedings of the AMS-IMS-SIAM Summer Research Conference on Statistical Inference from Stochastic Processes, held at Cornell University in August 1987. This book provides students and researchers with a familiarity with the foundations of inference from stochastic processes and intends to provide a knowledge of the developments.
Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modeling complex phenomena. The subject has attracted researchers from several areas of mathematics. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods.
From the reviews: "In this Lecture Note volume the author describes his differential-geometric approach to parametrical statistical problems summarizing the results he had published in a series of papers in the last five years. The author provides a geometric framework for a special class of test and estimation procedures for curved exponential families. ... ... The material and ideas presented in this volume are important and it is recommended to everybody interested in the connection between statistics and geometry ..." #Metrika#1 "More than hundred references are given showing the growing interest in differential geometry with respect to statistics. The book can only strongly be recommended to a geodesist since it offers many new insights into statistics on a familiar ground." #Manuscripta Geodaetica#2
Given a series of wind speeds and directions from the port of Fremantle the aim of this monograph is to detect general weather patterns and seasonal characteristics. To separate the daily land and sea breeze cycle and other short-term disturbances from the general wind, the series is divided into a daily and a longer term, synoptic component. The latter is related to the atmospheric pressure field, while the former is studied in order i) to isolate particular short-term events such as calms, storms and oscillating winds, and ii) to determine the land and sea breeze cycle which dominates the weather pattern for most of the year. All these patterns are described in detail and are related to the synoptic component of the data. Two time series models for directional data and a new measure of angular association are introduced to provide the basis for certain parts of the analysis.
Because of the sheer size and scope of the plastics industry, the title Developments in Plastics Technology now covers an incredibly wide range of subjects or topics. No single volume can survey the whole field in any depth and what follows is, therefore, a series of chapters on selected topics. The topics were selected by us, the editors, because of their immediate relevance to the plastics industry. When one considers the advancements of the plastics processing machinery (in terms of its speed of operation and conciseness of control), it was felt that several chapters should be included which related to the types of control systems used and the correct usage of hydraulics. The importance of using cellular, rubber-modified and engineering-type plastics has had a major impact on the plastics industry and therefore a chapter on each of these subjects has been included. The two remaining chapters are on the characterisation and behaviour of polymer structures, both subjects again being of current academic or industrial interest. Each of the contributions was written by a specialist in that field and to them all, we, the editors, extend our heartfelt thanks, as writing a contribution for a book such as this, while doing a full-time job, is no easy task.