Download Free Asymptotic Methods In Nonlinear Wave Phenomena In Honor Of The 65th Birthday Of Antonio Greco Book in PDF and EPUB Free Download. You can read online Asymptotic Methods In Nonlinear Wave Phenomena In Honor Of The 65th Birthday Of Antonio Greco and write the review.

This book brings together several contributions from leading experts in the field of nonlinear wave propagation. This field, which during the last three decades has seen important breakthroughs from the theoretical point of view, has recently acquired increased relevance due to advances in the technology of fluids e.g. at microscale or nanoscale and the recognition of crucial applications to the understanding of biological phenomena.Nonlinear wave theory requires the use of disparate approaches, including formal and rigorous asymptotic methods, Lie group theory, energy methods, numerical analysis, and bifurcation theory. This book presents a unique blend in which different aspects of the theory are enlightened and several real-life applications are investigated. The book will be a valuable resource for applied scientists interested in some of the most recent advances in the theory and in the applications of wave propagation, shock formation, nonequilibrium thermodynamics and energy methods.
This book brings together several contributions from leading experts in the field of nonlinear wave propagation. This field, which during the last three decades has seen important breakthroughs from the theoretical point of view, has recently acquired increased relevance due to advances in the technology of fluids e.g. at microscale or nanoscale and the recognition of crucial applications to the understanding of biological phenomena. Nonlinear wave theory requires the use of disparate approaches, including formal and rigorous asymptotic methods, Lie group theory, energy methods, numerical analysis, and bifurcation theory. This book presents a unique blend in which different aspects of the theory are enlightened and several real-life applications are investigated. The book will be a valuable resource for applied scientists interested in some of the most recent advances in the theory and in the applications of wave propagation, shock formation, nonequilibrium thermodynamics and energy methods.
Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics through the exploitation of its predictions for measurements of light scattering and sound propagation.
The subject of the exact renormalization group started from pioneering work by Wegner and Houghton in the early seventies and, a decade later, by Polchinski, who formulated the Wilson renormalization group for field theory. In the past decade considerable progress has been made in this field, which includes the development of alternative formulations of the approach and of powerful techniques for solving the exact renormalization group equations, as well as widening of the scope of the exact renormalization group method to include fermions and gauge fields. In particular, two very recent results, namely the manifestly gauge-invariant formulation of the exact renormalization group equation and the proof of the c-theorem in four dimensions, are presented in this volume.
Mathematics forms bridges between knowledge, tradition, and contemporary life. The continuous development and growth of its many branches, both classical and modern, permeates and fertilizes all aspects of applied science and technology, and so has a vital impact on our modern society. The book will focus on these aspects and will benefit from the contribution of several world-famous scientists from mathematics and related sciences, such as: Ralph Abraham, Andrew Crumey, Peter Markowich, Claudio Procesi, Clive Ruggles, Ismail Serageldin, Amin Shokrollahi, Tobias Wallisser.
This volume contains the proceedings of the Colloquium "Analysis, Manifolds and Physics" organized in honour of Yvonne Choquet-Bruhat by her friends, collaborators and former students, on June 3, 4 and 5, 1992 in Paris. Its title accurately reflects the domains to which Yvonne Choquet-Bruhat has made essential contributions. Since the rise of General Relativity, the geometry of Manifolds has become a non-trivial part of space-time physics. At the same time, Functional Analysis has been of enormous importance in Quantum Mechanics, and Quantum Field Theory. Its role becomes decisive when one considers the global behaviour of solutions of differential systems on manifolds. In this sense, General Relativity is an exceptional theory in which the solutions of a highly non-linear system of partial differential equations define by themselves the very manifold on which they are supposed to exist. This is why a solution of Einstein's equations cannot be physically interpreted before its global behaviour is known, taking into account the entire hypothetical underlying manifold. In her youth, Yvonne Choquet-Bruhat contributed in a spectacular way to this domain stretching between physics and mathematics, when she gave the proof of the existence of solutions to Einstein's equations on differential manifolds of a quite general type. The methods she created have been worked out by the French school of mathematics, principally by Jean Leray. Her first proof of the local existence and uniqueness of solutions of Einstein's equations inspired Jean Leray's theory of general hyperbolic systems.
A panel of internationally renowned scientists discuss the latest results in plasma technology. This volume has been compiled with both a didactic approach and an overview of the newest achievements for industrial applications. It is divided into two main sections. One is focused on fundamental technology, including plasma production and control, high-pressure discharges, modeling and simulation, diagnostics, dust control, and etching. The section on application technology covers polymer treatments, silicon solar cell, coating and spray, biomaterials, sterilization and waste treatment, plasma propulsion, plasma display panels, and anti-corrosion coatings. The result is an indispensable work for physicists, chemists and engineers involved in the field of plasma technology.
The subject this volume is explicit integration, that is, the analytical as opposed to the numerical solution, of all kinds of nonlinear differential equations (ordinary differential, partial differential, finite difference). Such equations describe many physical phenomena, their analytic solutions (particular solutions, first integral, and so forth) are in many cases preferable to numerical computation, which may be long, costly and, worst, subject to numerical errors. In addition, the analytic approach can provide a global knowledge of the solution, while the numerical approach is always local. Explicit integration is based on the powerful methods based on an in-depth study of singularities, that were first used by Poincar and subsequently developed by Painlev in his famous Leons de Stockholm of 1895. The recent interest in the subject and in the equations investigated by Painlev dates back about thirty years ago, arising from three, apparently disjoint, fields: the Ising model of statistical physics and field theory, propagation of solitons, and dynamical systems. The chapters in this volume, based on courses given at Cargse 1998, alternate mathematics and physics; they are intended to bring researchers entering the field to the level of present research.
Contains invited lectures presented at the Third International Conference on Engineering Computational Technology, held in Prague, Czech Republic, 4-6 September 2002. It includes contributions from: CG Armstrong, SN Atluri, AC Benim, P Bomme, D Bowman, RS Crouch, Y Dere, O Hassan, and more.